$$ \usepackage{amssymb} \newcommand{\N}{\mathbb{N}} \newcommand{\C}{\mathbb{C}} \newcommand{\R}{\mathbb{R}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\ZZ}{\ooalign{Z\cr\hidewidth\kern0.1em\raisebox{-0.5ex}{Z}\hidewidth\cr}} \newcommand{\colim}{\text{colim}} \newcommand{\weaktopo}{\tau_\text{weak}} \newcommand{\strongtopo}{\tau_\text{strong}} \newcommand{\normtopo}{\tau_\text{norm}} \newcommand{\green}[1]{\textcolor{ForestGreen}{#1}} \newcommand{\red}[1]{\textcolor{red}{#1}} \newcommand{\blue}[1]{\textcolor{blue}{#1}} \newcommand{\orange}[1]{\textcolor{orange}{#1}} \newcommand{\tr}{\text{tr}} \newcommand{\id}{\text{id}} \newcommand{\im}{\text{im}\>} \newcommand{\res}{\text{res}} \newcommand{\TopTwo}{\underline{\text{Top}^{(2)}}} \newcommand{\CW}[1]{\underline{#1\text{-CW}}} \newcommand{\ZZ}{% \ooalign{Z\cr\hidewidth\raisebox{-0.5ex}{Z}\hidewidth\cr}% } % specific for this document \newcommand{\cellOne}{\textcolor{green}{1}} \newcommand{\cellTwo}{\textcolor{red}{2}} \newcommand{\cellThree}{\textcolor{brown}{3}} \newcommand{\cellFour}{\textcolor{YellowOrange}{4}} $$

Knot theory - peripheral system

math
algebra
abstract algebra
knot theory
Author

Luca Leon Happel

Published

May 5, 2023

Abstract

In knot theory, the peripheral system is an important concept that helps to classify and distinguish different knots. In this video I animated it for an oberseminar at Heinrich Heine University during my masters degree in mathematics.