$$ \usepackage{amssymb} \newcommand{\N}{\mathbb{N}} \newcommand{\C}{\mathbb{C}} \newcommand{\R}{\mathbb{R}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\ZZ}{\ooalign{Z\cr\hidewidth\kern0.1em\raisebox{-0.5ex}{Z}\hidewidth\cr}} \newcommand{\colim}{\text{colim}} \newcommand{\weaktopo}{\tau_\text{weak}} \newcommand{\strongtopo}{\tau_\text{strong}} \newcommand{\normtopo}{\tau_\text{norm}} \newcommand{\green}[1]{\textcolor{ForestGreen}{#1}} \newcommand{\red}[1]{\textcolor{red}{#1}} \newcommand{\blue}[1]{\textcolor{blue}{#1}} \newcommand{\orange}[1]{\textcolor{orange}{#1}} \newcommand{\tr}{\text{tr}} \newcommand{\id}{\text{id}} \newcommand{\im}{\text{im}\>} \newcommand{\res}{\text{res}} \newcommand{\TopTwo}{\underline{\text{Top}^{(2)}}} \newcommand{\CW}[1]{\underline{#1\text{-CW}}} \newcommand{\ZZ}{% \ooalign{Z\cr\hidewidth\raisebox{-0.5ex}{Z}\hidewidth\cr}% } % specific for this document \newcommand{\cellOne}{\textcolor{green}{1}} \newcommand{\cellTwo}{\textcolor{red}{2}} \newcommand{\cellThree}{\textcolor{brown}{3}} \newcommand{\cellFour}{\textcolor{YellowOrange}{4}} $$

Prove that \(\mathbb{R}[x]/(x^2+bx+c)\) is isomorphic to \(\mathbb{R}^2\) or \(\mathbb{C}\) - First try

math
algebra
ring theory
abstract algebra
polynomial rings
quotient rings
isomorphisms
Author

Luca Leon Happel

Published

December 3, 2020

A few minutes ago I stumbled upon this meme on some math and science forum:

Prove that Rx/(x^2+bx+c) is isomorphic to R^2 or C

Here is my thought process:

\(b^2-4c\) is just the discriminant of the polynomial \(f(x) = x^2+bx+c\), and I will refer to it from now on as \(\Delta(f)\).

We know that if \(\Delta(f)>0\) then the formula \(\frac{-b\pm\sqrt{b^2-4c}}{2} = -\frac{b}{2} \pm \sqrt{\left(\frac{b}{2}\right)^2 - c}\) gives us the zeros \(x_1, x_2 \in \mathbb{R}\) of \(f\). Let’s look at \(\mathbb{R}[x] / (f)\). And identify each part now.

The solution to this problem can be found in this blog post