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1 Einleitung

In der Schulmathematik behandeln wir bereits einfachste polynomielle Glei-
chungen wie die quadratische Gleichung ax? + bx + ¢ = 0 mit a,b,c und
x als reelle Zahlen. Fithren wir diesen Gedankengang weiter, gelangen wir
in die abstrakte Algebra. Hier verwenden wir polynomielle Gleichungen wie
22 +1 =0, um aus den reellen Zahlen die Komplexen zu gewinnen.

Elliptische Kurven entspringen derselben Grundidee. Sie sind die Lo-
sungsmengen kubischer Gleichungen der Form y? = 23 + ux + v, wobei u
und v reelle Zahlen sind, sodass 4u®+27v? ungleich Null ist (ansonsten hétte
die Kurve einen singuldren Punkt). Trotz ihres Namens sind elliptische Kur-
ven keine Ellipsen. Ihr Name stammt daher, dass sie bei der Berechnung der
Bogenlange von Ellipsen zum Tragen kommen.

Erstaunlich ist, dass wir auf den Punkten ei-
ner elliptischen Kurve eine Addition erkldren kon-
nen. Wahlen wir zwei Punkte P und @), definieren
wir ihre Summe durch das "Chord-Tangent group
law*: Wenn P und () zwei verschiedene Punkte
sind, so schneidet die Sekante welche durch P
und @ geht, die elliptische Kurve in einem drit-
ten Punkt PQ. Wenn wir PQ nun entlang der
x-Achse spiegeln, erhalten wir den Punkt P + Q.
Wenn P und @ gleich sind, betrachten wir ein-
fach die Tangente, statt ihrer Sekante. Wenn die
Gerade durch P und @ vertikal verlauft, ist der
dritte Schnittpunkt ein Punkt im Unendlichen O.
Somit kénnen wir elliptische Kurven nicht im gewohnten R™ betrachten und
miissen in den projektiven Raum iibergehen, in welchem O existiert.

Elliptische Kurven konnen jedoch nicht nur
iiber dem Korper der reellen Zahlen definiert wer-
den. So kénnen wir auch einen endlichen Kérper
[F,« mit p prim und d als natiirliche Zahl wahlen.
Wir sehen rechts die elliptische Kurve zu der Glei-
chung y? +y = 2 + 2® + x einmal fiir die reellen
Zahlen und darunter fiir den endlichen Korper mit
vier Elementen F,. Zu den acht Punkten der el-
liptischen Kurve iiber 4 kommt noch der Punkt
im Unendlichen hinzu.

Der Beweis von Andrew Wiles des legendéren
“grofsen Satz von Fermat®, welcher besagt, dass
die Gleichung a™ + b™ = ¢" fiir n > 2 keine natiir-

Gruppengesetz auf
Elliptischen Kurven

v +y=x3+22+2 Gber R




lichen Losungen a,b und ¢ hat, verwendet auch in einer zentralen Rolle die
elliptischen Kurven.

Jedoch spielen die elliptischen Kurven nicht nur in der theoretischen Ma-
thematik eine ausgesprochene Rolle. Besonders im Zusammenhang mit end-
lichen Korpern werden elliptische Kurven in der modernen Telekommunika-
tion und im Internet verwendet. Angenommen wir verkaufen online ein Buch
iiber Algebra, so wird der Kéufer ein Formular mit seinen Bankdaten und
anderen vertraulichen Informationen ausfiillen miissen. Damit jedoch keine
Dritten diese Daten abgreifen konnen, miissen wir sicherstellen, dass seine
Daten verschliisselt an uns tibermittelt werden. Wir betreten somit den Be-
reich der Kryptografie.

Bis 1975 waren alle kryptografischen Verfahren symmetrisch. Das bedeu-
tet, dhnlich wie bei einem Ceasar-Cypher einigen sich Sender und Empfanger
auf einen geheimen gemeinsamen Schliissel, welcher das Verschliisseln und
Entschliisseln von Nachrichten erlaubt. Diese Technik ist in unserem Fall je-
doch nicht niitzlich, da unser gesamter Verkehr iiber das Internet abgehort
werden konnte (insbesondere auch der Austausch beim Einigen auf einen
geheimen Schliissel).

1976 wurde jedoch von den Amerikanern Whitefield Diffie, Matrin Hell-
man und Ralph Merkle die asymmetrische Kryptografie vorgeschlagen. Bei
dieser gibt es einen privaten und einen offentlichen Schliissel. Jeder Absen-
der kann seine Nachricht mit dem o6ffentlichen Schliissel verschliisseln, doch
nur der Empfinger kann mit seinem privaten Schliissel diese Nachrichten
entschliisseln. In unserem Fall wiirden wir unseren o6ffentlichen Schliissel mit
dem Formular verschicken, woraufhin der Kéufer seine privaten Daten da-
mit verschliisselt an uns schickt und am Ende wiirden nur wir mit unserem
privaten Schliissel diese Daten entschliisseln konnen.

1978 wurde am MIT von Ronald Rivest, Adi Shamir und Leonard Adler-
mann ein Durchbruch erzielt und das RSA-Protokoll erfunden, welches die
Ideen der asymmetrischen Kryptografie umsetzt. Dieses wandelt eine Nach-
richt zusammen mit einem offentlichen Schliissel injektiv in eine verschliis-
selte Nachricht um. Jedoch ist, selbst wenn man den &ffentlichen Schliissel
kennt, die Umkehrabbildung so schwer zu berechnen, dass selbst alle Rech-
ner der Welt zusammen diese nicht in menschlicher Lebenszeit berechnen
konnen, aufser man besitzt den privaten Schliissel.

RSA funktioniert in unserem Fall so: Wir einigen uns mit dem Kéaufer un-
seres Buches zuerst auf einen endlichen Korper mit ¢ Elementen und wéahlen
ein Element z daraus. Dieses Element soll durch wiederholtes multiplizieren
auf sich selbst alle Elemente des Korpers durchlaufen — also eine primitive
Einheitswurzel sein. Nun wahlt der Kéaufer eine geheime Zahl a zwischen eins
und ¢ — 1. Wir machen dasselbe und nennen diese Zahl b. Wir tauschen jetzt



egenseitie unsere Werte fiir 2%, beziehungsweise x? aus, woraufhin der K&u-
b b

fer (2*)" berechnet und wir (2%)". Diese Berechnungen sind duferst effizient
und nach den Potenzgesetzen haben wir beide am Ende 2% = 2** berechnet.

Sollte indessen ein Betriiger die Kommunikation zu unserem Kunden be-
lauscht haben, wiisste er 2%, 2° sowie =, doch der Wert 2% ist ihm unbekannt!
Somit kann unser Kunde nun seine privaten Daten mit unserem geheimen
Wert 2% als Passwort verschliisseln und wir kénnen es entschliisseln.

Die einzige Moglichkeit des Betriigers wére, aus seinen bekannten Werten
2% effizient zu berechnen. Reichen wiirde dafiir bereits aus * den Wert a zu
bestimmen, was dem Logarithmus zur Basis x dhnelt. Dies ist das "Diskreter-
Logarithmus-Problem®, zu welchem es jedoch bisher noch keine effiziente Lo-
sung gibt.

Fiir zusatzliche Sicherheit sollten wir ¢

2 =z3 2 Uber F, . . 1
Yy ty=a’fatt Uber so wahlen, dass es einen moglichst grofsen

01 o Primfaktor besitzt. Wir konnen es dem Be-
> triiger bei weitem erschweren, indem wir

ut 1y * \X‘”’\\' komplexere algebraische Strukturen verwen-
o - . N den. Meist wird dazu die abelsche Gruppe

S . ﬁ/\xx einer elliptischen Kurve iiber einem endli-

19 o o chen Korper gewahlt. Da diese Korper nur

® ¢ o  endlich viele Elemente besitzen, sind die
T Gruppen der Kurven auch endlich. Wéhlen

1w utl O wir unseren Korper oder unsere elliptische

Kurve ungeschickt, kann das Diskrete-Logarithmus-Problem jedoch effizien-
ter gelost werden: So wird die Gruppe der elliptischen Kurve links von v und
w erzeugt und sie ist isomorph zu Z/3Z @ Z/3Z. Egal welches x wir aus der
Gruppe wihlen, 2%, 2° und 2 kénnen maximal 3 verschiedene Werte sein.

Im Folgenden mdéchten wir diese Problematik fiir den Korper Fy genau-
er untersuchen. Wir fragen uns, wie viele Gruppenstrukturen auf den ellip-
tischen Kurven iiber diesem Korper existieren und welche fiir uns niitzli-
cher als andere sind. Dabei werden wir Techniken aus der Analysis, Algebra
und Geometrie verwenden und verkniipfen. Zudem werden wir mithilfe der
Diskriminante und der j-Invarianten (welche in den letzten Jahren durch
die Monstergruppe und die "moonshine theory“ populér wurde) zu unserem
Hauptresultat vordringen:

Theorem. Uber dem Kirper Fy gibt es bis auf Isomorphie 13 elliptische
Kurven:



j-Invariante | Reprdasentant Gruppe
1 E P +ay=a°+1 787
1 Ey: P +aoy=a3+ur?+1 7]27
u+1 Es: > +ay=2°+u YARY/
u+1 Ey:y?+ay=2a2°+ur? +u Z/6Z
u Es:y*+oy=a3+ (u+1) Z/AZ
u Ee:y*+ay=a2+ur?+ (u+1) Z]6Z
0 Er:y*+y=23 7)37 ® 7/37
0 Es:y*+y=234+u 7/37
0 Ey:y? +uy =23 777
0 Ew:y*+uy=2>+u 7./3Z
0 By :y*+(u+1l)y=a2a3 Z]TZ
0 Eyu:y*+u+1)y=23+1 {0}
0 Eis:y?+y=a2°+x 7./87

Unser Plan ist dabei folgender: Zuerst méchten wir die Konstruktion des
Korpers mit vier Elementen wiederholen. Wir mochten auch einen kleinen
Einstieg in die Theorie der affinen Varietdten machen, um den projektiven
Raum und seine Varietédten behandeln zu konnen.

Der darauf folgende Abschnitt handelt von elliptischen Kurven. Wir méch-
ten deren Gruppengesetz genauer betrachten, die allgemeine Weierstralform
verwenden und wichtige Invarianten kennenlernen.

Der Hohepunkt wird im dritten und letzten Abschnitt erreicht. Hier wer-
den wir alle elliptischen Kurven iiber dem Korper mit vier Elementen bis auf
Isomorphie klassifizieren und ihre Gruppenstrukturen berechnen.

Aufserdem wiirde ich diese Gelegenheit gerne nutzen, um meine
Danksagungen an meine Familie — insbesondere meine Mutter Sonja G. C.
Happel-Hermkes meinen Vater Ferdinand L. Happel — und meine Freunde

kenntlich zu machen. Ohne Thre Unterstiitzung wére diese Arbeit nie
zustande gekommen.



1.1 Der Korper mit vier Elementen

Zu jeder Primzahl p und natiirlichen Zahl d existiert ein endlicher Korper
F,a. Nur fiir im Fall d = 1 ergibt Z/pZ einen Kérper mit p Elementen. Wenn
d > 1 ist, miissen wir den Polynomring durch ein irreduzibles Polynom des
Grades d teilen.

Definition 1.1. Der Koérper mit vier Elementen ist Fy = Fo[X]/(f) wobei
(f) das Ideal zu einem irreduziblen f = X? + aX + b € Fy[X] ist.

Aus der abstrakten Algebra wissen wir, dass die obige Konstruktion eine
Korpererweiterung des Fy darstellt und somit, dass 4, von Charakteristik 2
ist. Doch wie kénnen wir dieses (f) wéhlen?

Proposition 1.2. Der KorperFy ist eindeutig und hat vier Elemente {0, 1, u, u+
1}, wobei v* =u+1, v +u+1=0,u*=1, (u+1)?*+(u+1)+1=1

Beweis. Nach Definition 1.1 gilt Fy = Fo[X]/(f) fiir ein irreduzibles f €
Fy[X] von Grad zwei. Wir mochten die Eindeutigkeit von F, durch die Ein-
deutigkeit von f schliefsen und folglich durch f die vier Gleichungen beweisen.
Sei fu = X? +aX + b € Fy[X], so bilden foo, fo1, fio, f11 alle moglichen
Kandidaten fiir ein irreduzibles Polynom in Fy[X| von Grad zwei.

fo=X*=X-X ist reduzibel
fuo=X+1=X>4+2X+1=(X+1)(X +1) ist reduzibel
flo=X*+X=X(X+1) ist reduzibel
fi=X*4+X+1 ist irreduzibel

Wobei wir die Irreduzibilitit von f;; dadurch erkennen kénnen, dass wir
bereits sdmtliche Kombinationen von Polynomen ersten Grades miteinander

multipliziert haben, jedoch nicht fi; resultierte.
Somit ist Fy durch Fo/(f) mit f = X%+ X +1 eindeutig definiert und wir
kénnen v = X und v = X? wiihlen, wodurch wir die Gleichungen erhalten.
O

Basierend auf dieser Proposition kénnen wir die Additions- und Multipli-
kationstabellen fiir 4 bestimmen:

+ 0 1 U u+1
0 0 1 U u+1
1 1 0 u+1 U
U U u+1 0 1
u+1 u+1 U 1 0




* 0 1 U u+1
0 0 0 0 0
1 0 1 U u+1
U 0 U u+1 1
u+1 0 u—+1 1 u

Mit diesen Tabellen kénnen wir direkt die folgende Proposition beweisen:

Proposition 1.3. Der Kdrper Fy besitzt einen nicht-trivialen Automorphis-
mus gegeben durch u — u + 1.

Beweis. Wir wissen, dass s keine nicht-trivialen Automorphismen besitzt.
Somit ist Aut(F,) = Aut(F4/Fs) Wir haben nun nur zwei Abbildungen,
welche Automorphismen sein kénnen: id und ¢(u) = w + 1. Dabei ist id
klarerweise ein Automorphismus. Auch ¢ ist ein Kérperautomorphismus, da
olu+1)=u=p(u)+¢(l) =u+1+1=u. Insgesamt gilt, dass ¢ bijektiv
ist und die multiplikative, sowie additive Struktur erhélt. O

1.2 Affiner Raum

Zu einem Korper k£ konnen wir den Vektorraum k" bilden. Dieser ist auch
als affiner Raum A™(k) oder fiir n = 2 als affine Ebene bekannt. Wahlen wir
ein Polynom f aus k[T3,...,T,], dann kénnen wir es fiir Punkte im affinen
Raum auswerten. Dies fithrt uns zu dem folgenden Begriff:

V(f)=A{(x1,...,z,) € A™(k) | f(z1,...,2,) =0}

ist die Nullstellenmenge zu f und wird auch eine algebraische Varietdt, be-
ziehungsweise affine Varietit wenn f irreduzibel ist, genannt. Analog ist
V(fi,..., fr) die gemeinsame Nullstellenmenge zu f; bis f,. Zu einer Teil-
menge X C A"(k) hat das Verschwindungsideal eine umgekehrte Bedeutung,
da es die Menge aller Polynome ist, welche auf X verschwinden:

I(X)=A{feklTh,....T.] | f(z1,...,2,) =0Y(21,...,2,) € X}
Proposition 1.4. Die Menge I(X) ist ein Ideal.

Beweis. Seien f,g € 1(X), h € k[Ty,...,T,]. So gilt f + ¢ € I(X) und
h - f € I(X). Insbesondere ist h = —1 mdglich, wodurch I(X) eine additive
Gruppe mit Skalarmultiplikation aus &[T}, ..., T,], also ein Ideal ist. O



Rechts haben wir die affine Varietdt V] =
V(ETE + 378 +T5 — 1) in Grau und V5 =
V(T — T3, Ty — T3) in Schwarz dargestellt, wo-
bei wir erkennen, dass es einen Unterschied in
der Dimension dieser gibt. Dieser Fakt scheint
sich in der Anzahl der Parameter von V wie-
der zu spiegeln, jedoch gilt fiir jede Varietét
iiber einem Korper, wenn f ein Polynom und
c # 0 ist, dass V(f) = V(c- f) und somit ins-
besondere auch V(f) = V(f,c- f). Anhand der
Parameterzahl von V' koénnen wir dessen Dimension somit nicht erschliefien.

Stattdessen betrachten wir den Koordinatenring k[Vi], beziehungsweise
k[V3]. Dieser ist definiert fiir eine beliebige Varietat X C A™(k) als

K[X] = k[T, ... T,)/1(X).

Die Dimension von X ist die Krull-Dimension dieses Ringes; also der grofte
Wert r fiir den eine Primidealkette pg € p1 € -+ C p, in k[X] existiert.

Fir V, gilt k[Vo] = k[Th, 1o, T3] /(Ty — T2, Ty — T3) = k[T}]. Hier finden wir
als grofste Primidealkette (0) € (77) und die Dimension von V; ist 1, so wie
wir es auch geometrisch von einer Geraden erwarten.

Links sehen wir Beispiele fiir Singularititen. Grob ge-

Yy’ =2*(z +1) o o :
3 7 sagt sind dies Punkte, an denen die Dimension lokal an-
17 ders ist, als die Dimension der Varietat, auf denen sie
0 1 liegen. Wir mochten diese nun rigoros definieren.
-1
. .1 Definition 1.5. Zu einem Punkt p = (p1,...,pn) der

-10 1 Varietdt V(f) mit f € k[Ty,...,T,] ist der Zariski-
Tangentialraum definiert als die Losungsmenge T,V (f)

v’ =2 (-1 {eg linearen Gleichungssystems
1 /
3 "L Of
07 T.
~17 \ .
-10 1 Es ist klar, dass T,V (f) ein Vektorraum ist, fiir den
, stets dim(7,V'(f)) > dim(V (f)) gilt.
Yy =
1 Definition 1.6. Eine Singularitit ist ein Punkt p auf
0 ] einer Varietat V' mit dim(7,V) > dim(V)
-1 Fiir Kurven auf der affinen Ebene folgt daraus direkt:
-10 1



Proposition 1.7. Sei V(f) eine Kurve. Ein p € V(f) ist eine Singularitit,
genau dann wenn
_of) _of

f(P)—&p—a—y =0.

p

Der Punkt (0,0) in den drei Beispielen stellt alle moglichen Singulari-
taten von Kurven in der affinen Ebene dar. Das sind der Reihe nach: Ein
Doppelpunkt, ein isolierter Punkt und eine Spitze. Man nennt nicht-singulére
Varietaten auch glatt.

1.3 Projektiver Raum

In der Einleitung haben wir bereits {iber einen Punkt im
Unendlichen O gesprochen, welcher nicht im affinen Raum
vorhanden ist und nur im projektiven Raum P" existiert.
Der P" ist so konstruiert, dass die Defekte des affinen ‘
Raumes behoben werden. So sind Séatze wie "Zwei ver-
schiedene Geraden schneiden sich stets in einem Punkt®
wahr im projektiven Raum. Fiir die reelle projektive Ebe- . :
ne P?(R) konnen wir uns vorstellen, dass wir fiir jede Schar |
von parallelen Geraden einen "unendlich weit entfernten
Punkt®, worauf all diese gemeinsam zulaufen und welcher
nur am Horizont sichtbar ist, hinzufiigen. Rechts ist da-
zu ein Beispiel, mit einer elliptischen Kurve, welche auch
einen Punkt im Unendlichen O beinhaltet.

.

S

-~

Definition 1.8. Der projektive Raum P"(k) zu einem Korper k ist definiert
als (k"™ < 0)/k*. Seine Elemente werden mit (z : -+ - : x,,1) bezeichnet.

Diese Konstruktion korrespondiert dazu, dass wir die eindimensionalen
Untervektorrdume von k"1 als Punkte in einem neuen Raum P"(k) betrach-
ten. Die Bahnen der obigen Aquivalenzrelation zusammen mit 0 sind dabei
genau diese Untervektorraume. Wie wir in unseren Darstellungen der reellen
projektiven Ebene schon sehen konnten, gibt es auch eine Verbindung des
projektiven n-Raumes mit dem affinen n-Raum:

Proposition 1.9. Der P"(k) ist eine n-dimensionale k-Mannigfaltigkeit.

Beweis. Wir mochten zeigen, dass X = P"(k) eine n-dimensionale k - Man-
nigfaltigkeit ist. Es ist bereits klar, dass X zweitabzédhlbar und hausdorft’sch
ist. Wir zeigen nur noch, dass X lokal homéomorph zu A"(k) ist. Mit Hin-
blick auf den kommenden Abschnitt verwenden wir dabei V., welches wir
dort definieren werden. Dazu wéahlen wir die Karten U; = X ~\ V. (7T;) mit

9
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X; € k[Th,...,Ths] fiir 1 <1 < n+ 1 zusammen mit der Kartenabbildung
¢; + Uy — A"(k) (auch Dehomogenisierung genannt, beziehungsweise ¢~
Homogenisierung) definiert durch:

. . o . . D1 Pi-1 DPit1 Pn+1
(pl""-pi—l-pi‘pz’—&—l""-pn—i—l):(_7”-7 ) R )
bi pi P pi
Die ¢; sind somit auch rationale Funktionen. O]

In diesem Beweis verwenden wir projektive Varietdaten V., (T;), welche wir
noch genau definieren miissen. Dazu betrachten wir den graduierten Ring
R =k[Th,...,T,41] Ein graduierter Ring R ist ein Ring, welcher als direkte
Summe additiver Gruppen @20 R; mit R,,R, C R,,R, zerlegt werden kann.
Der Polynomring k[T},...,T,1] erhilt seine Graduierung kanonisch durch
den Grad deg. Ein Element f, welches in genau einem R; liegt, nennen wir
homogen. Fiir k[T, ..., T,1] ist das dquivalent dazu, dass f(\z) = M\ f(z)
fiir alle A € k und eine natiirliche Zahl d, welche wir den Grad von f nennen,
gilt.

Insbesondere gilt, wenn z € k"™ und f € k[Ty,...,T,,1] ein homogenes
Polynom mit f(z) = 0 ist, so wird auch f(Az) = 0 sein. Somit kénnen wir
einem Punkt p € P"(k) eindeutig zuordnen, ob dieser eine Nullstelle des
homogenen Polynoms f ist. Dies fiihrt uns zu dem Begriff der projektiven
Varietat:

Vilf) =A@t apn) €PUE) | f((z1,. .0 20p1)) = 0}

Indem wir nun die homogene Zerlequng f = fo+-- -+ f,. fiir ein Element
[ in einem graduierten Ring R = @;°, R; in homogene Komponenten f;
betrachten, konnen wir homogene Ideale a als Ideale definieren, welche zu
jedem f € a auch alle homogenen Komponenten von f in a haben. Diese
treten beim homogenen Verschwindungsideal I,(X) auf, welches analog zum
Verschwindungsideal im affinen Fall, fiir ein X C P"(k) als homogenes Ideal
aller homogenen Polynome in k[T73,...,T,1], welche auf X verschwinden,
definiert ist.

Analog kénnen wir auch den Koordinatenring [V, ]
fir projektive Varietaten V, C P"(k) definieren, was
uns erlaubt, die Dimension und den Tangentialraum
einer projektiven Varietét zu bestimmen.

So kénnen wir die Dimension der Geraden im Un-
endlichen der projektiven Ebene bestimmen. Diese ist
eine projektive Hyperebene, das bedeutet sie ist von der
Dimension genau um eins kleiner, als die des Raum-
es in welchem sie liegt. Die Gerade im Unendlichen ist

Gerade im Unendli-
chen des P%(R)

10



die Menge aller Punkte, welche wir der affinen Ebene hinzufiigen miissen,
um die projektive Ebene zu erhalten. Wie wir bereits in 1.9 gesehen haben,
kénnen wir die projektive Ebene zu dem affinen Raum dehomogenisieren.
Dehomogenisieren wir also mittels ¢, zur ersten Koordinate von P?(k), so
wird P?(k) \ Uy nicht in A?(k) abgebildet. Unsere Gerade im Unendlichen ist
P%(k)\U; = P! (k) , welche fiir den reellen Fall auch links als Kreis abgebildet
ist, da P'(R) = A'U{oo} mit oo zu dem Punkt (0 : 1) korrespondiert.

Proposition 1.10. Die projektive Ebene iiber dem endlichen Korper mit vier
Elementen besteht aus 21 Punkten.

Beweis. Da F4 ein Korper ist, sind alle von Null verschiedenen Elemente
invertierbar, also F; = Fy. Auferdem gilt F; = Z/37Z, da u ein primitives
Element ist. Da [} frei auf F3 wirkt, gilt, dass die Linge jeder Bahn drei ist.
Somit gilt |(F3 \ 0)/F;| = (4> —1)/3 =21 O

Insbesondere haben wir, wenn wir die projektive Ebene iiber dem Kor-
per mit vier Elementen nach der ersten Koordinate dehomogenisieren, eine
Gerade im Unendlichen bestehend aus 5 Punkten, da A%(F,) aus 4> = 16
Punkten besteht und somit 5 Punkte tibrig bleiben:

X ) ™ ° °
D D o (0
ut+14 o 2. P <.
R 7BV
Y - .
A
1A .
g
T T T *_
1 U u+1 O

Die Gerade im Unendlichen des P?(F,)

1.4 Projektive Kurven und ihre Morphismen

Wir bezeichnen mit dem Grad einer Kurve V,(f) iiber dem Korper k& den
Grad d des homogenen Polynoms f. Im Fall d = 1 nennen wir V. (f) eine
Gerade und fiir d = 2 einen Kegelschnitt. Ein K -rationaler Punkt fiir eine
Korpererweiterung K O k ist ein Punkt aus V,(f) € P?(K). Um einfacher

11



iiber die K-rationalen Punkte einer Kurve zu reden, fiihren wir die Notati-
on Cy = V,(f) C P?(k) ein. Wir bezeichnen die Menge aller K-rationalen
Punkte der Kurve C als Cy(K).

Es ist nun klar, sollte man einen Hintergrund in Kategorientheorie und
Funktoren haben, dass Cy ein Unterfunktor des Funktors P? : (k—Korper) —
(Set) von der Kategorie der Korper iiber k in die Kategorie der Mengen ist
(Siehe [6, Kapitel 2, Absatz 2]). Und diesen Fakt mdchten wir nutzen, um
projektive Transformationen einzufithren. Ist M : A*(k) — A3(k) eine nicht-
singuldre lineare Transformationen, also eine Matrix mit vollem Rang, so
besitzt diese eine Inverse M~! und wir kénnen dazu assoziierte projekti-
ve Transformationen P?(M),P?(M~') : P*(K) — P?(K) bilden. Diese sind
wohldefiniert, da Matrizen Geraden auf Geraden abbilden. Als Bijektionen,
welche Geraden auf Geraden abbilden nennen wir die Abbildungen P?(M)
und P?(M)~! auch Kolineationen. Hierbei ist zu beachten, dass jedoch nicht
alle Kolineationen auch projektive Transformationen sind. Uber dem Kérper
F,4, welcher nach Proposition 1.3 nicht-triviale Automorphismen besitzt, wir-
ken diese als Kolineationen, jedoch nicht als projektive Transformationen auf
P%(F,).

Wichtig ist, dass wenn f € k[z,y, 2] ein homogenes Polynom von Grad d
ist, dass auch fo M ein homogenes Polynom von Grad d ist und Cyop(K) =
M~*C4(K). Der Grund dafiir ist, dass (foM)(M*(z,y,2)) = 0 genau dann
gilt, wenn f(x,y,z) = 0, doch wir konnen dies auch direkt visuell an einem
zwei-dimensionalen Beispiel erkennen, indem wir den Schnitt des Graphen
von f mit der Ebene z = 0 betrachten:

fo) =it vn 2=

(a) Cy (c) M~1Cy

Abbildung 3: Darstellung von Cjop(R) = M~1Cy(R) als Schnitt von Gra-
phen mit der Z = 0 Ebene
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In beiden Féllen 3b und 3c sind die Schnittmengen der Graphen mit
der Ebene z = 0 identisch. Somit bilden projektive Transformationen alge-
braische Kurven auf algebraische Kurven ab und erhalten dabei Grad und
Irreduzibilitédt, da eine Abbildung M wie oben als Gruppenautomorphismus
auf k[T1,Ts, T3], fur jeden Grad d € N wirkt. Sie stellen also die Morphismen
zwischen algebraischen Kurven da. Eine wichtige Folgerung daraus ist:

Proposition 1.11. Sei Cy eine nicht-singuldre projektive kubische Kurve.
FEine projektive Transformation dndert nicht die Anzahl der Singularitditen
von Cf.

Beweis. Betrachten wir die projektive Transformation P?(M) fiir eine nicht-
singulare Matrix M. Angenommen fiir die nicht-singulére kubische Kurve
C; wiirde Cops eine Singularitéit besitzen. Da Clpopy = M1C} ist, miisste
bereits C; eine Singularitit besitzen, da M ! nicht-singuldr ist, da M nicht
singuldr ist. Dies ist ein Widerspruch. [

2 Elliptische Kurven

2.1 Die allgemeine Weierstrafiform

Somit kommen wir auch zum Kernthema dieser Bache-
lorarbeit. Die elliptischen Kurven sind nicht-singulére ku-
bische projektive Kurven. Diese haben immer einen In-
flektionspunkt, also einen nicht-singulédren Punkt, dessen
Tangente seine Kurve nur ein mal schneidet. Wenden wir
auf eine elliptische Kurve eine projektive Transformation
an, wodurch wir ihren Inflektionspunkt zum Punkt im Un-
endlichen O = (0 : 1 : 0) verschieben, sodass die Tangente
der elliptischen Kurve bei O die Gerade im Unendlichen
ist, so erhalten wir als definierende Gleichung dieser trans- \ ;
formierten elliptischen Kurve folgendes: s .

YV2Z+a XYZ+a3YZ® = XP + ay X*Z + ay X 2% + a6 Z° B

Diese Gleichung nennen wir auch projektive allgemei- i A

ne Weierstrafigleichung. Rechts sehen wir am Beispiel ~‘ 74

der homogenisierten Gleichung von —z* 4 tz(2y + 2)? + \ \

$(2y + z)2?, wie der oben genannte Prozess zu der allge- \ w@.w’
!

meinen Weierstrafgleichung Y27 — X3+ X Z? fiihrt. Dabei
10 0 /a /

verwenden wir P(M) mit M = |0 —0.5 1
0 1 0
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T Standardméfig werden wir diese jedoch dehomogeni-
gﬁ* % siert nach der Z-Koordinate in der affinen Ebene behan-
\ « :

del. So erhalten wir mit der Konvention ¢5(X) = z und

\ = ¢3(Y) = y die affine allgemeine Weierstrafigleichung, be-
\\ ( ‘,!% ziehungsweise affine allgemeine Weierstraf$form:
o “"“———\J’m E y2 + a1y + azy = z° + a2x2 + a4x + ag,

welche wir fortan benutzen werden, um elliptische Kur-
ven aufzuschreiben. Dabei steht E fiir die Losungsmenge
der Gleichung. Links sehen wir, wie aus der allgemeinen
o < Weierstrakform die affine allgemeine Weierstrafsform ge-
\ ﬂ wonnen wird. Wire die Charakteristik des Korpers iiber
\ ] e dem wir diese Gleichung betrachten ungleich 2, so kénnten
T wir noch eine kiirzere Gleichung - die kurze Weierstrafs-
gleichung - konstruieren. Doch da wir uns fiir den Korper
mit vier Elementen interessieren, ist dies nicht relevant fiir
uns.

Wir mdéchten bei der allgemeinen Weierstrakform nur
einen Punkt im Unendlichen haben, welcher ein Inflekti-
onspunkt ist und als Tangente die Gerade im Unendlichen
hat, damit wir die folgende Gruppenstruktur spéter ein-
facher anwenden konnen.

2.2 Das Gruppengesetz

Das Chord-Tangent group law, welches in der Einfiihrung bereits kurz er-
wahnt wurde und ein Gruppengesetz auf den elliptischen Kurven definiert,
entspringt folgendermafien: Sei C; eine elliptische Kurve. Wéhlen wir eine
Gerade L C P? aus, so schneidet sie die elliptische Kurve 3 mal nach Be-
zout’s Theorem, da C eine kubische Kurve ist. Dabei ist wichtig, sollte L
eine Tangente von C'y am Punkt P sein, so wird P doppelt gezihlt.

Definition 2.1. Wir definieren auf der elliptischen Kurve Cy eine binare
Operation durch

—|—20f><0f—>0f, P+Q:(PQ)O

Dabei bezeichnet P(Q) den dritten Schnittpunkt der Geraden L durch P und
Q, beziehungsweise der Tangente an P, sollte P = () sein, mit der elliptischen
Kurve Cy.

Proposition 2.2. Durch die oben definierte Operation wird Cy zu einer abel-
schen Gruppe.
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Beweis. 1. Die Kommutativitéit folgt daraus, dass die Gerade P(@) durch
P und @ dieselbe ist wie QP durch ) und P.

2. Dazu funktioniert O als das neutrale Element, denn fiir einen Punkt
P ¢ Uy geht die Gerade durch P und O nur noch durch einen dritten
Punkt PO. Wenn wir nun die Gerade durch PO und O betrachten,
so muss diese ihren dritten Schnittpunkt wieder bei P haben. Also gilt

P+0=(PO)O =P

3. Zu einem P € ('} existiert auch ein inverses —P mit der Eigenschaft
P + (—P) = 0. Wéhlen wir —P als PO, so sehen wir durch die Kom-
mutativitdt von + und dadurch, dass O das neutrale Element ist, dass

O=(P+0)+PQ=P+(—P).

4. Zuletzt ist der Beweis der Assoziativitét in |1, Kapitel 7| zu finden.

]

Diese Gruppe ist zudem immer von Rang 1, also zyklisch, oder Rang 2,
also das Produkt zweier zyklischer Gruppen. Eine sehr einfache Folgerung,
deren Beweis direkt aus den obigen Sétzen folgt, ist:

Korollar 2.3. Sind P,(Q), R € C; Punkte auf einer Geraden, so gilt: P+ Q)+

R=0

Nun kénnen wir auch erklaren, warum wir die
allgemeine Weierstrakform einer elliptischen Kur-
ve E so gewéhlt haben, dass ihr Inflektionspunkt
der Punkt im Unendlichen O und seine Tangen-
te die Gerade im Unendlichen ist. Rechts sehen
wir am Beispiel der elliptischen Kurve mit Weier-
strakform y? = x® — z im Reellen wieso: Dadurch,
dass der Inflektionspunkt und seine Tangente im
Unendlichen liegen, kénnen wir unter der Dekom-
position P2 = A2UP! sehen, dass alle Punkte wel-
che nicht trivial auf E wirken in A? liegen. Ledig-
lich das neutrale Element O liegt fernab auf der
projektiven Gerade.

2.3 Wichtige Konstanten

Abbildung 4: E : 3>
2 —x C P? = A2UP!

Nun stellt sich uns die Frage, ob unter einer projektiven Transformation
die Gruppenstruktur erhalten bleibt? Erstaunlicherweise ist die Antwort ja,
was daran liegt, dass projektive Transformationen auch Kolineationen sind.
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Jedoch muss eine projektive Transformation nicht den Punkt im Unendlichen
der elliptischen Kurve bei O = (0 : 1 : 0), oder als Inflektionspunkt belassen.

Wir fragen uns jedoch, welche projektiven Transformationen den Punkt
im Unendlichen unveréndert lassen und ihn als Inflektionspunkt mit der Ge-
raden im Unendlichen als Tangente beibehalten. Werden diese Eigenschaften
namlich erhalten, so wird auch die transformierte elliptische Kurve in allge-
meiner Weierstraftform sein.

Definieren wir dafiir zuerst ein paar niitzliche Konstanten zu einer frei
wahlbaren kubischen Kurve E in affiner allgemeiner Weierstraftform, welche
durch quadratische Erginzung auftreten:

b2 = CL% + 4&2
b4 = aias + 2@4
b6 = CL% + 4&6

2 2 2
bs = ajas — arasay + 4asag + asaz — a;

Diese Werte stehen dabei durch 4bg = bybs — b3 in Relation und fithren uns
zu dem Begriff der Diskriminanten:

Definition 2.4. Sei E eine projektive kubische Kurve in allgemeiner Weier-
strafsform. Wir definieren zu E die Diskriminante A durch:

A = A(E) = —b3bg — 8b3 — 27bg + 9bybybs

Die Diskriminante ist, wie wir noch sehen werden, dadurch fiir uns von
Bedeutung, dass sie uns ein einfaches Kriterium liefert, welches uns entschei-
den lésst, ob eine kubische Kurve nicht-singulér (also eine elliptische Kurve)
ist, oder nicht. Darauf werden wir im néchsten Abschnitt beim Untersuchen
der Bedingungen fiir Glatte einer kubischen Kurve eingehen und dies speziell
fiir den Korper mit vier Elementen beweisen. Aufterdem definieren wir jetzt
noch die Konstanten, welche durch kubische Ergénzung auftreten:

Cq4 = bg — 24b4
cg = —bi + 36byby — 21bg

mit der Relation 123A = ¢} — ¢2. Diese fiihren uns — sollte A(E) invertierbar
sein — zu der j-Invarianten.

Definition 2.5. Zu einer projektiven kubischen Kurve mit invertierbarer
Diskriminante definieren wir die j-Invariante als:




Doch wieso nennen wir diese Konstante eine Invariante? Wir haben be-
reits die projektiven Transformationen als Morphismen der projektiven Va-
rietdten und insbesondere der elliptischen Kurven beschrieben. Somit sind
zwei elliptische Kurven C; und C, isomorph, wenn diese isomorph als pro-
jektive Varietdten sind, also Morphismen ¢ : Cy — C, und ¢ : C; — C}
existieren, sodass deren Kompositionen ¢ o ¢ und v o ¢ die Identitdten auf
Cy, beziehungsweise €, sind. Wir kénnen somit bei einer Isomorphie von
zwei elliptischen Kurven diese umkehrbar eindeutig aufeinander durch ei-
ne projektive Transformation abbilden. Die j-Invariante ist nun genau zu
diesen Isomorphien invariant. Das bedeutet, alle isomorphen Kurven haben
dieselbe j-Invariante. Sollte der zugrunde liegende Ring dieser Kurven zu-
dem algebraisch abgeschlossen sein, so gilt sogar die Riickrichtung [3] und
zwei elliptische Kurven sind isomorph, genau dann, wenn ihre j-Invariante
gleich ist. Ein Beweis dazu folgt im kommenden Abschnitt. Auferdem gilt,
sind zwei elliptische Kurven isomorph, so sind auch deren abelschen Gruppen
isomorph. Wie wir auch noch sehen werden, kénnen wir jedoch nicht durch
isomorphe abelsche Gruppen elliptischer Kurven darauf schlieften, dass diese
elliptischen Kurven isomorph sind|8].

2.4 Zulassige Variablenanderungen

Angenommen wir haben eine elliptische Kurve E, welche ihren Inflektions-
punkt im Punkt im Unendlichen O = (0 : 1 : 0) hat und dessen Tangente die
Gerade im Unendlichen ist. Betrachten wir die affine Weierstrafform dieser
Kurve, so fragen wir uns, welche projektiven Transformationen diese Eigen-
schaften beibehalten. Dazu betrachten wir Folgendes:

Definition 2.6. Eine zuldssige Variablendnderung in der affinen Weierstraf-
gleichung einer elliptischen Kurve C; mit f € k[z,y| hat die Form:

xzu%—f—r, y:u3§+su2f+t
mit u,r, s und ¢ in k und u invertierbar.

Dabei ist die Betrachtung z — 4?Z +7 und y — vy + su?Z +1t als "Varia-
blenénderung* eine dquivalente Sichtweise zu der, dass dies eine projektive
Transformation ist. Die wichtigste Eigenschaft dieser Variablendnderungen,
welche sie "zuléssig® macht, ist folgende:

Proposition 2.7. Substitution durch eine zuldssige Variablendnderung der
Variablen wie in 2.6 einer elliptischen Kurve in affiner allgemeiner Weier-
straf$glerchung:

y2 + a1xy + azy = 2+ a2$2 + asx + ag
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fiihrt zu der neuen elliptischen Kurve in affinen allgemeinen WeierstrafSglei-
chung:
Y2+ @177 + a3y = T° + pT® + G4T + dg
mit den Relationen:
ua; = a1 + 2s

UGy = ag — say + 3r — s°

udas = as + ray + 2t

u'dy = ag — sas + 2ray — (t +rs)a; + 3r? — 2st

uSag = ag + ras + rias + 1 — tag — rta; — t*
Beweis. Da die Lénge des Beweises durch seine langwierigen Rechnungen
den Rahmen dieser Arbeit sprengen wiirde, verweisen wir auf |1, Kapitel 111

Absatz 1] O
Direkt daraus folgt auch, dass u?cy = c4, u¢s = c6, u'2A = A und
insbesondere 7 = j, was die Invarianz der j-Invarianten unter zuldssigen

Variablenénderungen, beweist.

Die zuléssigen Variablenénderungen sind somit die projektiven Transfor-
mationen, welche den Punkt im Unendlichen erhalten und auch die Tangente
dessen, als Gerade im Unendlichen beibehalten. Man nennt solche projekti-
ven Transformationen elliptischer Kurven, welche den Punkt im Unendlichen
und seine Tangente, sowie die Gruppenstruktur unverandert lassen auch Iso-
genien. Die Kompositionen und das Inverse zuldssiger Variablendnderungen
sind auch wieder zuldssige Variablenénderungen, da diese projektive Trans-
formationen sind. Insbesondere gilt, dass eine zuléssige Variablendnderung
¢ : E — E auch eine affine lineare Transformation ist, wodurch fiir P und
Q auf E gilt, dass p(P + Q) = ¢(P) + ¢(Q), wodurch zuléssige Variablen-
anderung Gruppenisomorphismen sind.

Aufgrund dessen bezeichnen wir die zulédssigen Variablendnderungen im
folgenden als Isomorphismen elliptischer Kurven in affiner Weierstrafsform.

3 Isomorphe elliptische Kurven iber [y

3.1 Nicht-singulare Kurven in Charakteristik 2

Wir haben bereits gesehen, dass zu jeder elliptischen Kurve eine affine allge-
meine Weierstrakform mit Punkt im Unendlichen O = (0 : 1 : 0) existiert,
welcher nicht in der affinen Ebene liegt. Nun moéchten wir wissen, zu welcher
affinen Weierstrafform eine elliptische Kurve mit Punkt im Unendlichen wie
gerade beschrieben gehort.
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Proposition 3.1. Zu jeder affinen allgemeinen Weierstrafigleichung f ist der
einzige Punkt im Unendlichen, welcher auf der korrespondierenden Kurve C
liegt der Punkt (0:1:0).

Beweis. Betrachte die affine allgemeine Weierstrafgleichung y?+a,xy+asy =
23 + apx?® + ayx + ag und homogenisiere sie zur projektiven allgemeinen Wei-
erstrafigleichung Y27 4+ a1 XY Z 4+ a3Y 7% = X3 + o X?Z + as X 7% + ag Z°.
Nachrechnen ergibt, dass (0 : 1 : 0) eine Losung ist. Es kann keine weite-
re Losung auf der Geraden im Unendlichen Z = 0 existieren, da wenn wir
Z = 0 einsetzen, nur 0 = X?3 {ibrig bleibt. Somit muss fiir einen Punkt
im Unendlichen die X-Koordinate Null sein. Auch kann die Y-Koordinate
nicht Null sein, da (0 : 0 : 0) nicht in der projektiven Ebene liegt. Somit
ist der einzige Punkt im Unendlichen einer allgemeinen Weierstrafigleichung
O=(0:1:0). O

Jedoch muss die kubische Kurve Cf, welche zu der allgemeinen Weier-
strafsgleichung f korrespondiert auch nicht-singulér sein, damit C'; eine el-
liptische Kurve ist. Wir schrinken nun unsere Sicht auf einen Koérper k mit
Charakteristik 2 — wie den Korper mit vier Elementen — ein, wo uns folgende
Proposition hilft:

Proposition 3.2. Die Kurve korrespondierend zu einer allgemeinen Weier-
strafigleichung tiber einem Kérper k mit Charakteristik 2 ist nicht-singuldr,
wenn thre Diskriminante nicht Null ist.

Beweis. Sei y? + a12y + asy = x° + a2x? + aax + ag eine affine allgemeine
Weierstrafigleichung konstruiert zu der Kurve E. Nach Proposition 1.11 reicht
es aus diese auf Singularitdten zu priifen.

1. Fall 5 # 0: Dieser Fall tritt genau dann ein, wenn a; # 0 ist. Das liegt
daran, weil in Charakteristik 2 die ausgegrauten Terme wegfallen:

3

G
N
cy = b3—24b,

bQ = a%+4(12

Wir wahlen nun eine Konstante ¢ € £ und wenden die zuldssige Varia-
blendnderung = — x + ¢, y — y an. Dadurch wird:

y2 + a1xy + azy = 23 apx® + ayx + ag

Zu
T+ a1Z7 + (arc + a3)yJ = T° + 272 + asT + a.
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Wenn a; ungleich Null ist konnen wir also durch eine passende Wahl
von ¢ als ag/a; eine zuldssige Variablenénderung finden, welche unse-
re allgemeine Weierstrakform so umformt, dass kein azy Term mehr
vorhanden ist:

y2 + oy = x + a2x2 + a4x + ag.

Wenden wir jetzt die zuldssige Variablenédnderung x — ajz, y — aly
an, so kdnnen wir diese resultierende Gleichung durch a; = 1 normali-
sieren. So erhalten wir:

y2 + Yy :x3+a2x2+a4x+a6.

Indem wir indessen s = —ay in einer zuléssigen Variablendnderung wéah-
len, erhalten wir eine isomorphe Kurve mit allgemeiner Weierstrafsform:

y2 +xy = 3 4 asx® + ag.

Hieraus folgt by = a? = 1, by = 0a;+2a4 = 0 = 0°+4ag = bg und bg = a’
durch die Definition der by, by, bg und bg. Auferdem vereinfacht sich A
zu ag, da ¢4 = 1 ist. Nach Proposition 1.7 existiert eine Singularitét,

of _ 2 Of _ — .2 3 2 ;
wenn - = Yy + L =gxund f = vy 4+ 2y — 2° — asx® — ag eine

» dy
gemeinsame Nullstelle besitzen. Die Terme y + 22 und z teilen sich nur
bei (0,0) eine Nullstelle. Diese ist auch eine Nullstelle von f, wenn ihr

konstanter Term ag Null ist.

Somit ist eine kubische Kurve in allgemeiner Weierstrafform mit j # 0
genau dann glatt, wenn A ungleich Null ist und dieser Fall stimmt.

2. Fall j = 0: Analog zum obigen Fall wissen wir, dass a; = 0 sein muss.
Aufserdem erhalten wir durch kubische Ergénzung:

y? 4 asy = 2° + agr + ag

Hieraus folgt by = by = 0,bs = a3 und by = a3, woraus folgt, dass
¢y = 1 und A = ai sowie j = 0. Berechnen wir wieder wie im obigen
Fall % = 2%+ ay, % = a3 sehen wir direkt, dass die Kurve genau dann
nicht-singulér ist, wenn ag # 0, beziehungsweise weil £k als Korper keine
nilpotenten Elemente besitzt, wenn A # 0 ist. Somit stimmt auch dieser

Fall.
O

Korollar 3.3. Die affine allgemeine Weierstrassform einer elliptischen Kur-
ve E vereinfacht sich fiir j(E) # 0 zu y*> + zy = 2% + a2 + ag und fiir j = 0
2w y? 4 azy = 2 + aqx + ag.
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3.2 Isomorphe elliptische Kurven in Charakteristik 2

Wann sind zwei elliptische Kurven F und E isomorph iiber einem Korper k
mit Charakteristik 27 Auf jeden Fall muss j(E) = j(E) gelten, da j invariant
unter Isomorphismen elliptischer Kurven ist. Nun vereinfacht sich die Frage
auf die Falle 7 # 0 und j = 0:

Fall j # 0: Wie wir bereits aus Proposition 3.2 wissen, ist dieser Fall
gleichbedeutend mit a; # 0. Dank 3.3 wissen wir, dass F und E bis auf

Isomorphie folgendermafen beschrieben werden kénnen:
E 9?4+ xy = 2° + ar® + ag
E 2 4+ xy =2 + asr® + ag
Somit sind £ und E isomorph, sollte es eine zulissige Variablenidnderung
f: E — E geben. Angenommen f(x) = u?z + r so wiirde sich die Gleichung
von E unter f zu
v 4 uiry +ry = (r+ u2x)3 +ap (r+ uQ:L')2 + ag

andern. Insbesondere sehen wir einen ry Term. Da dieser Null sein muss, gilt
somit 7 = 0. Auch muss das x auf der linken Seite der Gleichung normiert
bleiben, wodurch u = 1 gelten muss. Somit muss f(z) = x.

Betrachten wir nun f(y) = vy + su?x +t = y + sz + t, so dindert sich £
unter f zu:

(sz+t+y) +a(sz+t+y) =2+ ar?+ ag
was nach Ausklammern zu
Y 4t tr oy + (82 4+ s)2? = 28 + agr? + ag

wird. Wir sehen, dass ein tz Term vorkommt, welcher nicht in der Gleichung
von F erscheint. Somit muss ¢ = 0 gelten, wodurch wir folgendes nach einer
Umformung erhalten:

y? +ay = 2%+ (ay — (s* + 8))2? + as.

Daraus folgt, dass f(y) = y + sx gilt. Aus diesen Ergebnissen folgern wir
direkt:

Lemma 3.4. Es existiert ein Isomorphismus f : E — E fiir j(E) = j(E) #
0 mit affiner allgemeiner Weierstrafiform wie oben genau dann, wenn es ein
s € k gibt, fiir welches ay — (s* + 8) = ag, beziehungsweise s* + s = Gy — a
qgilt.
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Natiirlicherweise folgt daraus, dass in einer Kérpererweiterung K O k in
welcher diese Bedingungen gilt, auch E und E isomorph werden, sollten sie es
nicht bereits in £ gewesen sein. Hierbei erinnern wir noch einmal daran, dass
sollte k algebraisch abgeschlossen sein, so folgt aus der gleichen j-Invarianten
zweier elliptischer Kurven ihre Isomorphie.

Hinsichtlich des Korpers F, ist das Bild der Funktion s + s + s nur
{0,1}. Daher gilt trivialerweise:

Proposition 3.5. In dem Kdorper Fy existiert ein Isomorphismus zwischen
zwei elliptischen Kurven E und E mit j(E) = j(E) # 0 nur, wenn as — as
gleich 1 oder 0 ist.

Aus obigem Lemma folgt auch direkt, dass in einem Korper, welcher die
quadratische Gleichung s* + s = dy — ay erfiillt, die Automorphismengruppe
Aut(E) isomorph zu Z/27 ist.

Fall j = 0: Wie im vorherigen Fall ist dieser Fall dquivalent zu a; = 0 und
gehen wir analog vor, erkennen wir, dass f(z) = u?r und f(y) = vdy+su?z+t
gilt. Dazu muss es u,r,s,t € k wie in 2.6 geben, fiir welche die folgenden
Gleichungen stimmen:

u3&3 = as

u4d4 = a4 + saz + st

ubag = ag + s2aq + tas + s° + r?
Somit erhalten wir die Schliisselaussage:
Lemma 3.6. Es existiert ein Isomorphismus f : E — E fiir j(E) = j(E) =
0 mit affiner allgemeiner Weierstrafiform wie oben genau dann, wenn u’ = 2—3
eine Kubikwurzel in k besitzt, sowie die separable Gleichung vierten Grades
sttast+as+utay = 0 eine Losung in s besitzt und die quadratische Gleichung
t2 + ast + (s® + s%ay + ag + ubag) = 0 eine Lisung in t besitzt.

Interessant mit Blick auf den Korper IFy ist hierbei, dass, wie wir es bereits
im Beweis von 1.10 gesehen haben, jedes Element sich selbst als Kubikwurzel
hat.

Betrachten wir nun eine Korpererweiterung K O k in welcher stets die
Losungen, welche in 3.6 gefordert sind, vorhanden sind. Dort gilt somit
Aut(FE) = Qg, wobel Qg = {£1, £i, +j, £k} die Einheitengruppe der ganz-
zahligen Quaternionen ist.

3.3 Kilassifikation der elliptischen Kurven iiber F,

Wir mochten nun alle elliptischen Kurven iiber dem Korper mit vier Elemen-
ten klassifizieren. Das Resultat dessen ist das Hauptresultat dieser Bachelor-
arbeit:
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Theorem 3.7. Uber dem Kérper Fy gibt es bis auf Isomorphie 13 elliptische
Kurven:

j-Invariante | Reprasentant
1 E iy +ay=2°+1
1 Ey:y?+aoy=a2%+ur?+1
u+1 Es:y?+ay=a2%+u
u+1 Ei:yP+ay=234+ur?+u
u Es:y*+ay=2>+ (u+1)
u Es:y*+ay=a2"+ur* + (u+1)
0 E; 2 +y=23
0 Es:y*+y=12>+u
0 Ey:y? +uy =a°
0 Ei:y*+uy=123+u
0 Ey:y*+ (u+ 1)y =23
0 En:y*+w+Dy=23+1
0 B:y*+y=23+z

Beweis. Wir betrachten wieder zwei Félle, je nachdem, ob die j-Invariante
einer elliptischen Kurve E iiber dem Korper mit vier Elementen F, null oder
nicht-null ist.

1. Fall j # 0: Nach 3.3 konnen wir annehmen, dass F bis auf Isomorphie
die Form y2 +zy = 23 + asx? + ag hat. Nach 3.2 muss dabei ag ungleich
Null sein.

Wihlen wir as = 0 und ag = 1 erhalten wir E; : y?>+ay = 23+1. Aus 3.5
folgt, dass By & F} : y* +xy = 2® + 22 + 1 jedoch die elliptische Kurve
Ey:y*+ay=24+ur?+1mit By X By iy +aoy =23+ (u+1)22 +1
nicht isomorph zu FEj ist.

Wihlen wir nun as = 0 und ag = u, so erhalten wir F3 : y? + ay =
23 + u. Da sich die j-Invariante einer Kurve unter einer zulissigen
Variablenédnderung nicht &ndert, ist diese Kurve nicht isomorph zu E;
oder Fy und analog wie im obigen Fall erhalten wir die nicht-isomorphe
Kurve E, : y? +xy = 23 + uz? +u

Zu guter Letzt wihlen wir noch a; = 0 und ag = (u + 1), wodurch wir
Es : y*+xy = 23+ (u+1) erhalten, wobei diese Kurve wiederum nicht-
isomorph zu der elliptischen Kurve Eg : y* + 2y = 23 + ua?® + (u + 1)
nach denselben Griinden wie oben ist.

Wir finden die j-Invarianten der jeweiligen elliptischen Kurven durch
simples Ausrechnen mittels ihrer Formel aus 2.5.
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2. Fall j = 0: Nach 3.3 muss die affine allgemeine Weierstrakform von F
bis auf Isomorphie y* + azy = 2% + a4z + ag sein. Dazu gilt nach 3.2,
dass az # 0 ist, da a3 = A # 0.

Wahlen wir daher a3 = 1, a4y = 0 und ag = 0, was uns die elliptische
Kurve E; : y?>+y = 23 liefert. Mittels 3.6 konnen wir herausfinden, wel-
che Variablenénderungen zulédssig sind. Indem wir alle nicht-zuléssigen
Variablenédnderungen betrachten, finden wir alle nicht-isomorphen Kur-
ven. Insbesondere nutzen wir dabei, dass = — 2* die Identitéit auf F,
ist, sowie dass die Abbildung = — 2% genau wie z — 2® in F, jedes
Element aufer 0 auf 1 schickt. Somit existiert eine zuldssige Variablen-
dnderung y +— vy + sv?x + t genau dann, wenn es v,7,s,t € k mit
v # 0 gibt, sodass s + ast + a4 + vay = 0 eine Ldsung in s, sowie
t? + ast + (s° + s%ay + ag + ag) = 0 eine Losung in ¢ besitzt.

Fiir unsere Wahl a3 = 1, a4 = 0 und ag = 0 bedeutet das, t + vay = s
und t2 4+t + (s° + @g) = 0. Wihlen wir a4 = 0 so erhalten wir ¢t = s
und die Gleichung t? + t + t% = ag hat nur fiir a6 = 0 oder ag = 1 eine
Losung. Somit ist die Kurve Eg : 4> +y =23 +u = y* +y = 2° +u
nicht isomorph zu F;.

Da nach 3.6 uas = as fiir eine zuliissige Variableninderung gelten

muss, wobei sich das in F; zu a3 = a3 vereinfacht, kénnen wir nun
as # as betrachten, um nicht-isomorphe elliptische Kurven zu erhalten.

So kann es zu der elliptischen Kurve mit a3 = u, ay = 0 und ag = 0, also
Ey : y?> +uy = 23 keinen Isomorphismus von E; oder Eg geben. Gehen
wir analog wie im vorherigen Fall vor, erhalten wir Eyg : y*+uy = 2°+u,
wobei ¢ nicht isomorph zu Ey, Eg und 7 sein kann.

Analog finden wir fiir a3 = u + 1 die nicht-isomorphen elliptischen
Kurven Fyp >+ (u+ Dy =23 und Ejp: y> + (u+ 1)y =23 + 1

Zuletzt erkennen wir, wiirde man bei einer der Kurven FE;, Eg, FEq,
Eiy, Eq1, Eis fir eine zuléssige Variablendnderung a, # 0 wahlen, so
erhalten wir zu der Gleichung #* + ast + (s° + s%ay + ag + @) = 0 mit
t = a4 + s keine Losung. Dies liefert uns Ey3 : y? +y = 23 + z eine
neue Isomorphieklasse elliptischer Kurven und wir haben alle moglichen
nicht-zulassigen Variablendanderungen in [F, ausprobiert.

]

3.4 Abelsche Gruppen elliptischer Kurven auf F,

Zuletzt konnen wir noch die Isomorphieklassen der elliptischen Kurven dar-
stellen. Interessant ist dies fiir uns unter Betrachtung des RSA-Verfahrens,
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welches wir in der Einleitung kennengelernt haben. Angenommen es wird die-
ses angewandt und zwei Personen einigen sich auf eine elliptische Kurve tiber
dem Korper Fy, sowie einen Punkt P darauf. Nun werden aP und bP mit a
und b als natiirliche Zahlen, von den verschiedenen Personen generiert und
ausgetauscht. Aus der Einleitung wissen wir, dass diese zwei Personen nun
das Geheimnis abP teilen. M6chten wir dieses als Angreifer herausfinden, wa-
re es sehr niitzlich zu wissen, welche Werte x P fiir ein natiirliches x auftreten
kénnen und wie diese zusammenhéngen. Dazu wahlen wir zu jeder Isomor-
phieklasse einen Représentanten und konstruieren zu diesem, genauso wie in
der Einleitung, eine Grafik, welche die Gruppenstruktur darstellt. Auferdem
kénnen wir, da wir wissen, dass die auftretenden Gruppen stets zyklisch von
maximal Rang zwei sind, durch Ausprobieren einen, beziehungsweise zwei
Erzeuger finden.

Die Anzahl der rationalen Punkte auf einer elliptischen Kurve E iiber F»
ist durch folgendes Theorem eingeschrénkt:

Theorem 3.8 (Riemann-Hypothese fiir elliptische Kurven (Hasse, 1934)).
Sei E eine elliptische Kurve iber IFy. Dann gilt

[#E([Fn) —1—q" <2¢"2, V¥n>1.

Somit kénnen wir nach maximal 9 gefundenen rationalen Punkten un-
sere Suche einstellen. Dies gibt uns folgende Klassifikation aller elliptischen
Kurven iiber dem Korper F, bis auf Isomorphie:
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