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1 Einleitung
In der Schulmathematik behandeln wir bereits einfachste polynomielle Glei-
chungen wie die quadratische Gleichung ax2 + bx + c = 0 mit a, b, c und
x als reelle Zahlen. Führen wir diesen Gedankengang weiter, gelangen wir
in die abstrakte Algebra. Hier verwenden wir polynomielle Gleichungen wie
x2 + 1 = 0, um aus den reellen Zahlen die Komplexen zu gewinnen.

Elliptische Kurven entspringen derselben Grundidee. Sie sind die Lö-
sungsmengen kubischer Gleichungen der Form y2 = x3 + ux + v, wobei u
und v reelle Zahlen sind, sodass 4u3 +27v2 ungleich Null ist (ansonsten hätte
die Kurve einen singulären Punkt). Trotz ihres Namens sind elliptische Kur-
ven keine Ellipsen. Ihr Name stammt daher, dass sie bei der Berechnung der
Bogenlänge von Ellipsen zum Tragen kommen.

P

P ′

Q

PQ

P+Q

O=P+P ′

O

Gruppengesetz auf
Elliptischen Kurven

Erstaunlich ist, dass wir auf den Punkten ei-
ner elliptischen Kurve eine Addition erklären kön-
nen. Wählen wir zwei Punkte P und Q, definieren
wir ihre Summe durch das ”Chord-Tangent group
law“: Wenn P und Q zwei verschiedene Punkte
sind, so schneidet die Sekante welche durch P
und Q geht, die elliptische Kurve in einem drit-
ten Punkt PQ. Wenn wir PQ nun entlang der
x-Achse spiegeln, erhalten wir den Punkt P +Q.
Wenn P und Q gleich sind, betrachten wir ein-
fach die Tangente, statt ihrer Sekante. Wenn die
Gerade durch P und Q vertikal verläuft, ist der
dritte Schnittpunkt ein Punkt im Unendlichen O.

Somit können wir elliptische Kurven nicht im gewohnten Rn betrachten und
müssen in den projektiven Raum übergehen, in welchem O existiert.
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y2 + y= x3 + x2 + x über 
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y2 + y= x3 + x2 + x über 4

Elliptische Kurven können jedoch nicht nur
über dem Körper der reellen Zahlen definiert wer-
den. So können wir auch einen endlichen Körper
Fpd mit p prim und d als natürliche Zahl wählen.
Wir sehen rechts die elliptische Kurve zu der Glei-
chung y2 + y = x3 + x2 + x einmal für die reellen
Zahlen und darunter für den endlichen Körper mit
vier Elementen F4. Zu den acht Punkten der el-
liptischen Kurve über F4 kommt noch der Punkt
im Unendlichen hinzu.

Der Beweis von Andrew Wiles des legendären
”großen Satz von Fermat“, welcher besagt, dass
die Gleichung an + bn = cn für n > 2 keine natür-
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lichen Lösungen a, b und c hat, verwendet auch in einer zentralen Rolle die
elliptischen Kurven.

Jedoch spielen die elliptischen Kurven nicht nur in der theoretischen Ma-
thematik eine ausgesprochene Rolle. Besonders im Zusammenhang mit end-
lichen Körpern werden elliptische Kurven in der modernen Telekommunika-
tion und im Internet verwendet. Angenommen wir verkaufen online ein Buch
über Algebra, so wird der Käufer ein Formular mit seinen Bankdaten und
anderen vertraulichen Informationen ausfüllen müssen. Damit jedoch keine
Dritten diese Daten abgreifen können, müssen wir sicherstellen, dass seine
Daten verschlüsselt an uns übermittelt werden. Wir betreten somit den Be-
reich der Kryptografie.

Bis 1975 waren alle kryptografischen Verfahren symmetrisch. Das bedeu-
tet, ähnlich wie bei einem Ceasar-Cypher einigen sich Sender und Empfänger
auf einen geheimen gemeinsamen Schlüssel, welcher das Verschlüsseln und
Entschlüsseln von Nachrichten erlaubt. Diese Technik ist in unserem Fall je-
doch nicht nützlich, da unser gesamter Verkehr über das Internet abgehört
werden könnte (insbesondere auch der Austausch beim Einigen auf einen
geheimen Schlüssel).

1976 wurde jedoch von den Amerikanern Whitefield Diffie, Matrin Hell-
man und Ralph Merkle die asymmetrische Kryptografie vorgeschlagen. Bei
dieser gibt es einen privaten und einen öffentlichen Schlüssel. Jeder Absen-
der kann seine Nachricht mit dem öffentlichen Schlüssel verschlüsseln, doch
nur der Empfänger kann mit seinem privaten Schlüssel diese Nachrichten
entschlüsseln. In unserem Fall würden wir unseren öffentlichen Schlüssel mit
dem Formular verschicken, woraufhin der Käufer seine privaten Daten da-
mit verschlüsselt an uns schickt und am Ende würden nur wir mit unserem
privaten Schlüssel diese Daten entschlüsseln können.

1978 wurde am MIT von Ronald Rivest, Adi Shamir und Leonard Adler-
mann ein Durchbruch erzielt und das RSA-Protokoll erfunden, welches die
Ideen der asymmetrischen Kryptografie umsetzt. Dieses wandelt eine Nach-
richt zusammen mit einem öffentlichen Schlüssel injektiv in eine verschlüs-
selte Nachricht um. Jedoch ist, selbst wenn man den öffentlichen Schlüssel
kennt, die Umkehrabbildung so schwer zu berechnen, dass selbst alle Rech-
ner der Welt zusammen diese nicht in menschlicher Lebenszeit berechnen
können, außer man besitzt den privaten Schlüssel.

RSA funktioniert in unserem Fall so: Wir einigen uns mit dem Käufer un-
seres Buches zuerst auf einen endlichen Körper mit t Elementen und wählen
ein Element x daraus. Dieses Element soll durch wiederholtes multiplizieren
auf sich selbst alle Elemente des Körpers durchlaufen – also eine primitive
Einheitswurzel sein. Nun wählt der Käufer eine geheime Zahl a zwischen eins
und t− 1. Wir machen dasselbe und nennen diese Zahl b. Wir tauschen jetzt
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gegenseitig unsere Werte für xa, beziehungsweise xb aus, woraufhin der Käu-
fer (xb)

a berechnet und wir (xa)b. Diese Berechnungen sind äußerst effizient
und nach den Potenzgesetzen haben wir beide am Ende xab = xba berechnet.

Sollte indessen ein Betrüger die Kommunikation zu unserem Kunden be-
lauscht haben, wüsste er xa, xb sowie x, doch der Wert xab ist ihm unbekannt!
Somit kann unser Kunde nun seine privaten Daten mit unserem geheimen
Wert xab als Passwort verschlüsseln und wir können es entschlüsseln.

Die einzige Möglichkeit des Betrügers wäre, aus seinen bekannten Werten
xab effizient zu berechnen. Reichen würde dafür bereits aus xa den Wert a zu
bestimmen, was dem Logarithmus zur Basis x ähnelt. Dies ist das ”Diskreter-
Logarithmus-Problem“, zu welchem es jedoch bisher noch keine effiziente Lö-
sung gibt.

1 u u+ 1 O
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y2 + y= x3 + x2 + x über 4

Für zusätzliche Sicherheit sollten wir t
so wählen, dass es einen möglichst großen
Primfaktor besitzt. Wir können es dem Be-
trüger bei weitem erschweren, indem wir
komplexere algebraische Strukturen verwen-
den. Meist wird dazu die abelsche Gruppe
einer elliptischen Kurve über einem endli-
chen Körper gewählt. Da diese Körper nur
endlich viele Elemente besitzen, sind die
Gruppen der Kurven auch endlich. Wählen
wir unseren Körper oder unsere elliptische

Kurve ungeschickt, kann das Diskrete-Logarithmus-Problem jedoch effizien-
ter gelöst werden: So wird die Gruppe der elliptischen Kurve links von v und
w erzeugt und sie ist isomorph zu Z/3Z⊕ Z/3Z. Egal welches x wir aus der
Gruppe wählen, xa, xb und xab können maximal 3 verschiedene Werte sein.

Im Folgenden möchten wir diese Problematik für den Körper F4 genau-
er untersuchen. Wir fragen uns, wie viele Gruppenstrukturen auf den ellip-
tischen Kurven über diesem Körper existieren und welche für uns nützli-
cher als andere sind. Dabei werden wir Techniken aus der Analysis, Algebra
und Geometrie verwenden und verknüpfen. Zudem werden wir mithilfe der
Diskriminante und der j-Invarianten (welche in den letzten Jahren durch
die Monstergruppe und die ”moonshine theory“ populär wurde) zu unserem
Hauptresultat vordringen:

Theorem. Über dem Körper F4 gibt es bis auf Isomorphie 13 elliptische
Kurven:
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j-Invariante Repräsentant Gruppe
1 E1 : y2 + xy = x3 + 1 Z/8Z
1 E2 : y2 + xy = x3 + ux2 + 1 Z/2Z

u+ 1 E3 : y2 + xy = x3 + u Z/4Z
u+ 1 E4 : y2 + xy = x3 + ux2 + u Z/6Z
u E5 : y2 + xy = x3 + (u+ 1) Z/4Z
u E6 : y2 + xy = x3 + ux2 + (u+ 1) Z/6Z
0 E7 : y2 + y = x3 Z/3Z⊕ Z/3Z
0 E8 : y2 + y = x3 + u Z/3Z
0 E9 : y2 + uy = x3 Z/7Z
0 E10 : y2 + uy = x3 + u Z/3Z
0 E11 : y2 + (u+ 1)y = x3 Z/7Z
0 E12 : y2 + (u+ 1)y = x3 + 1 {0}
0 E13 : y2 + y = x3 + x Z/8Z

Unser Plan ist dabei folgender: Zuerst möchten wir die Konstruktion des
Körpers mit vier Elementen wiederholen. Wir möchten auch einen kleinen
Einstieg in die Theorie der affinen Varietäten machen, um den projektiven
Raum und seine Varietäten behandeln zu können.

Der darauf folgende Abschnitt handelt von elliptischen Kurven. Wir möch-
ten deren Gruppengesetz genauer betrachten, die allgemeine Weierstraßform
verwenden und wichtige Invarianten kennenlernen.

Der Höhepunkt wird im dritten und letzten Abschnitt erreicht. Hier wer-
den wir alle elliptischen Kurven über dem Körper mit vier Elementen bis auf
Isomorphie klassifizieren und ihre Gruppenstrukturen berechnen.

Außerdem würde ich diese Gelegenheit gerne nutzen, um meine
Danksagungen an meine Familie – insbesondere meine Mutter Sonja G. C.
Happel-Hermkes meinen Vater Ferdinand L. Happel – und meine Freunde

kenntlich zu machen. Ohne Ihre Unterstützung wäre diese Arbeit nie
zustande gekommen.
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1.1 Der Körper mit vier Elementen

Zu jeder Primzahl p und natürlichen Zahl d existiert ein endlicher Körper
Fpd . Nur für im Fall d = 1 ergibt Z/pZ einen Körper mit p Elementen. Wenn
d > 1 ist, müssen wir den Polynomring durch ein irreduzibles Polynom des
Grades d teilen.

Definition 1.1. Der Körper mit vier Elementen ist F4 = F2[X]/(f) wobei
(f) das Ideal zu einem irreduziblen f = X2 + aX + b ∈ F2[X] ist.

Aus der abstrakten Algebra wissen wir, dass die obige Konstruktion eine
Körpererweiterung des F2 darstellt und somit, dass F4 von Charakteristik 2
ist. Doch wie können wir dieses (f) wählen?

Proposition 1.2. Der Körper F4 ist eindeutig und hat vier Elemente {0, 1, u, u+
1}, wobei u2 = u+ 1, u2 + u+ 1 = 0, u3 = 1, (u+ 1)2 + (u+ 1) + 1 = 1.

Beweis. Nach Definition 1.1 gilt F4 = F2[X]/(f) für ein irreduzibles f ∈
F2[X] von Grad zwei. Wir möchten die Eindeutigkeit von F4 durch die Ein-
deutigkeit von f schließen und folglich durch f die vier Gleichungen beweisen.

Sei fab = X2 + aX + b ∈ F2[X], so bilden f00, f01, f10, f11 alle möglichen
Kandidaten für ein irreduzibles Polynom in F2[X] von Grad zwei.

f00 = X2 = X ·X ist reduzibel
f01 = X2 + 1 = X2 + 2X + 1 = (X + 1)(X + 1) ist reduzibel
f10 = X2 +X = X(X + 1) ist reduzibel
f11 = X2 +X + 1 ist irreduzibel

Wobei wir die Irreduzibilität von f11 dadurch erkennen können, dass wir
bereits sämtliche Kombinationen von Polynomen ersten Grades miteinander
multipliziert haben, jedoch nicht f11 resultierte.

Somit ist F4 durch F2/(f) mit f = X2 +X+1 eindeutig definiert und wir
können u = X und v = X2 wählen, wodurch wir die Gleichungen erhalten.

Basierend auf dieser Proposition können wir die Additions- und Multipli-
kationstabellen für F4 bestimmen:

+ 0 1 u u+ 1
0 0 1 u u+ 1
1 1 0 u+ 1 u
u u u+ 1 0 1

u+ 1 u+ 1 u 1 0
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∗ 0 1 u u+ 1
0 0 0 0 0
1 0 1 u u+ 1
u 0 u u+ 1 1

u+ 1 0 u+ 1 1 u

Mit diesen Tabellen können wir direkt die folgende Proposition beweisen:

Proposition 1.3. Der Körper F4 besitzt einen nicht-trivialen Automorphis-
mus gegeben durch u 7→ u+ 1.

Beweis. Wir wissen, dass F2 keine nicht-trivialen Automorphismen besitzt.
Somit ist Aut(F4) ∼= Aut(F4/F2) Wir haben nun nur zwei Abbildungen,
welche Automorphismen sein können: id und ϕ(u) = u + 1. Dabei ist id
klarerweise ein Automorphismus. Auch ϕ ist ein Körperautomorphismus, da
ϕ(u+ 1) = u = ϕ(u) + ϕ(1) = u+ 1 + 1 = u. Insgesamt gilt, dass ϕ bijektiv
ist und die multiplikative, sowie additive Struktur erhält.

1.2 Affiner Raum

Zu einem Körper k können wir den Vektorraum kn bilden. Dieser ist auch
als affiner Raum An(k) oder für n = 2 als affine Ebene bekannt. Wählen wir
ein Polynom f aus k[T1, . . . , Tn], dann können wir es für Punkte im affinen
Raum auswerten. Dies führt uns zu dem folgenden Begriff:

V (f) = {(x1, . . . , xn) ∈ An(k) | f(x1, . . . , xn) = 0}

ist die Nullstellenmenge zu f und wird auch eine algebraische Varietät, be-
ziehungsweise affine Varietät wenn f irreduzibel ist, genannt. Analog ist
V (f1, . . . , fr) die gemeinsame Nullstellenmenge zu f1 bis fr. Zu einer Teil-
menge X ⊂ An(k) hat das Verschwindungsideal eine umgekehrte Bedeutung,
da es die Menge aller Polynome ist, welche auf X verschwinden:

I(X) = {f ∈ k[T1, . . . , Tn] | f(x1, . . . , xn) = 0 ∀(x1, . . . , xn) ∈ X}

Proposition 1.4. Die Menge I(X) ist ein Ideal.

Beweis. Seien f, g ∈ I(X), h ∈ k[T1, . . . , Tn]. So gilt f + g ∈ I(X) und
h · f ∈ I(X). Insbesondere ist h = −1 möglich, wodurch I(X) eine additive
Gruppe mit Skalarmultiplikation aus k[T1, . . . , Tn], also ein Ideal ist.
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Rechts haben wir die affine Varietät V1 =
V (1

4
T 2

1 + 1
4
T 2

2 + T3 − 1) in Grau und V2 =
V (T1−T2, T1−T3) in Schwarz dargestellt, wo-
bei wir erkennen, dass es einen Unterschied in
der Dimension dieser gibt. Dieser Fakt scheint
sich in der Anzahl der Parameter von V wie-
der zu spiegeln, jedoch gilt für jede Varietät
über einem Körper, wenn f ein Polynom und
c 6= 0 ist, dass V (f) = V (c · f) und somit ins-
besondere auch V (f) = V (f, c ·f). Anhand der
Parameterzahl von V können wir dessen Dimension somit nicht erschließen.

Stattdessen betrachten wir den Koordinatenring k[V1], beziehungsweise
k[V2]. Dieser ist definiert für eine beliebige Varietät X ⊂ An(k) als

k[X] = k[T1, . . . , Tn]/I(X).

Die Dimension von X ist die Krull-Dimension dieses Ringes; also der größte
Wert r für den eine Primidealkette p0 ( p1 ( · · · ( pr in k[X] existiert.

Für V2 gilt k[V2] = k[T1, T2, T3]/(T1−T2, T1−T3) ∼= k[T1]. Hier finden wir
als größte Primidealkette (0) ( (T1) und die Dimension von V2 ist 1, so wie
wir es auch geometrisch von einer Geraden erwarten.

1 0 1

1
0
1
y2 = x2(x+ 1)

1 0 1

1
0
1
y2 = x2(x− 1)

1 0 1

1
0
1

y2 = x3

Links sehen wir Beispiele für Singularitäten. Grob ge-
sagt sind dies Punkte, an denen die Dimension lokal an-
ders ist, als die Dimension der Varietät, auf denen sie
liegen. Wir möchten diese nun rigoros definieren.

Definition 1.5. Zu einem Punkt p = (p1, . . . , pn) der
Varietät V (f) mit f ∈ k[T1, . . . , Tn] ist der Zariski-
Tangentialraum definiert als die Lösungsmenge TpV (f)
des linearen Gleichungssystems

n∑
i=1

∂f

∂Ti
(p)(Ti − pi).

Es ist klar, dass TpV (f) ein Vektorraum ist, für den
stets dim(TpV (f)) ≥ dim(V (f)) gilt.

Definition 1.6. Eine Singularität ist ein Punkt p auf
einer Varietät V mit dim(TpV ) > dim(V )

Für Kurven auf der affinen Ebene folgt daraus direkt:
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Proposition 1.7. Sei V (f) eine Kurve. Ein p ∈ V (f) ist eine Singularität,
genau dann wenn

f(p) =
∂f

∂x

∣∣∣∣
p

=
∂f

∂y

∣∣∣∣
p

= 0.

Der Punkt (0, 0) in den drei Beispielen stellt alle möglichen Singulari-
täten von Kurven in der affinen Ebene dar. Das sind der Reihe nach: Ein
Doppelpunkt, ein isolierter Punkt und eine Spitze. Man nennt nicht-singuläre
Varietäten auch glatt.

1.3 Projektiver Raum

In der Einleitung haben wir bereits über einen Punkt im
Unendlichen O gesprochen, welcher nicht im affinen Raum
vorhanden ist und nur im projektiven Raum Pn existiert.
Der Pn ist so konstruiert, dass die Defekte des affinen
Raumes behoben werden. So sind Sätze wie ”Zwei ver-
schiedene Geraden schneiden sich stets in einem Punkt“
wahr im projektiven Raum. Für die reelle projektive Ebe-
ne P2(R) können wir uns vorstellen, dass wir für jede Schar
von parallelen Geraden einen ”unendlich weit entfernten
Punkt“, worauf all diese gemeinsam zulaufen und welcher
nur am Horizont sichtbar ist, hinzufügen. Rechts ist da-
zu ein Beispiel, mit einer elliptischen Kurve, welche auch
einen Punkt im Unendlichen O beinhaltet.

Definition 1.8. Der projektive Raum Pn(k) zu einem Körper k ist definiert
als (kn+1 r 0)/k∗. Seine Elemente werden mit (x1 : · · · : xn+1) bezeichnet.

Diese Konstruktion korrespondiert dazu, dass wir die eindimensionalen
Untervektorräume von kn+1 als Punkte in einem neuen Raum Pn(k) betrach-
ten. Die Bahnen der obigen Äquivalenzrelation zusammen mit 0 sind dabei
genau diese Untervektorräume. Wie wir in unseren Darstellungen der reellen
projektiven Ebene schon sehen konnten, gibt es auch eine Verbindung des
projektiven n-Raumes mit dem affinen n-Raum:

Proposition 1.9. Der Pn(k) ist eine n-dimensionale k-Mannigfaltigkeit.

Beweis. Wir möchten zeigen, dass X = Pn(k) eine n-dimensionale k - Man-
nigfaltigkeit ist. Es ist bereits klar, dass X zweitabzählbar und hausdorff’sch
ist. Wir zeigen nur noch, dass X lokal homöomorph zu An(k) ist. Mit Hin-
blick auf den kommenden Abschnitt verwenden wir dabei V+, welches wir
dort definieren werden. Dazu wählen wir die Karten Ui = X r V+(Ti) mit

9
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Xi ∈ k[T1, . . . , Tn+1] für 1 ≤ 1 ≤ n + 1 zusammen mit der Kartenabbildung
φi : Ui → An(k) (auch Dehomogenisierung genannt, beziehungsweise φ−1

Homogenisierung) definiert durch:

(p1 : · · · : pi−1 : pi : pi+1 : · · · : pn+1) =

(
p1

pi
, . . . ,

pi−1

pi
,
pi+1

pi
, . . . ,

pn+1

pi

)
Die φi sind somit auch rationale Funktionen.

In diesem Beweis verwenden wir projektive Varietäten V+(Ti), welche wir
noch genau definieren müssen. Dazu betrachten wir den graduierten Ring
R = k[T1, . . . , Tn+1] Ein graduierter Ring R ist ein Ring, welcher als direkte
Summe additiver Gruppen

⊕∞
i=0Ri mit RmRn ⊆ RmRn zerlegt werden kann.

Der Polynomring k[T1, . . . , Tn+1] erhält seine Graduierung kanonisch durch
den Grad deg. Ein Element f , welches in genau einem Ri liegt, nennen wir
homogen. Für k[T1, . . . , Tn+1] ist das äquivalent dazu, dass f(λx) = λdf(x)
für alle λ ∈ k und eine natürliche Zahl d, welche wir den Grad von f nennen,
gilt.

Insbesondere gilt, wenn x ∈ kn+1 und f ∈ k[T1, . . . , Tn+1] ein homogenes
Polynom mit f(x) = 0 ist, so wird auch f(λx) = 0 sein. Somit können wir
einem Punkt p ∈ Pn(k) eindeutig zuordnen, ob dieser eine Nullstelle des
homogenen Polynoms f ist. Dies führt uns zu dem Begriff der projektiven
Varietät:

V+(f) = {(x1 : · · · : xn+1) ∈ Pn(k) | f((x1, . . . , xn+1)) = 0}

Indem wir nun die homogene Zerlegung f = f0 + · · ·+ fr für ein Element
f in einem graduierten Ring R =

⊕∞
i=0 Ri in homogene Komponenten fi

betrachten, können wir homogene Ideale a als Ideale definieren, welche zu
jedem f ∈ a auch alle homogenen Komponenten von f in a haben. Diese
treten beim homogenen Verschwindungsideal I+(X) auf, welches analog zum
Verschwindungsideal im affinen Fall, für ein X ⊂ Pn(k) als homogenes Ideal
aller homogenen Polynome in k[T1, . . . , Tn+1], welche auf X verschwinden,
definiert ist.

Gerade im Unendli-
chen des P2(R)

Analog können wir auch den Koordinatenring k[V+]
für projektive Varietäten V+ ⊂ Pn(k) definieren, was
uns erlaubt, die Dimension und den Tangentialraum
einer projektiven Varietät zu bestimmen.

So können wir die Dimension der Geraden im Un-
endlichen der projektiven Ebene bestimmen. Diese ist
eine projektive Hyperebene, das bedeutet sie ist von der
Dimension genau um eins kleiner, als die des Raum-
es in welchem sie liegt. Die Gerade im Unendlichen ist
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die Menge aller Punkte, welche wir der affinen Ebene hinzufügen müssen,
um die projektive Ebene zu erhalten. Wie wir bereits in 1.9 gesehen haben,
können wir die projektive Ebene zu dem affinen Raum dehomogenisieren.
Dehomogenisieren wir also mittels φ1 zur ersten Koordinate von P2(k), so
wird P2(k)rU1 nicht in A2(k) abgebildet. Unsere Gerade im Unendlichen ist
P2(k)rU1

∼= P1(k) , welche für den reellen Fall auch links als Kreis abgebildet
ist, da P1(R) = A1∪̇{∞} mit ∞ zu dem Punkt (0 : 1) korrespondiert.

Proposition 1.10. Die projektive Ebene über dem endlichen Körper mit vier
Elementen besteht aus 21 Punkten.

Beweis. Da F4 ein Körper ist, sind alle von Null verschiedenen Elemente
invertierbar, also F∗4 = F×4 . Außerdem gilt F×4 ∼= Z/3Z, da u ein primitives
Element ist. Da F∗4 frei auf F3

4 wirkt, gilt, dass die Länge jeder Bahn drei ist.
Somit gilt |(F3

4 r 0)/F∗4| = (43 − 1)/3 = 21

Insbesondere haben wir, wenn wir die projektive Ebene über dem Kör-
per mit vier Elementen nach der ersten Koordinate dehomogenisieren, eine
Gerade im Unendlichen bestehend aus 5 Punkten, da A2(F4) aus 42 = 16
Punkten besteht und somit 5 Punkte übrig bleiben:

1 u u+ 1 O

1

u

u+ 1

O
(0 : 0 : 1)

(0 : u
: 1)

(0 : u
+

1 : 1)

(0 : 1 : 1)

(0 : 1 : 0)

Die Gerade im Unendlichen des P2(F4)

1.4 Projektive Kurven und ihre Morphismen

Wir bezeichnen mit dem Grad einer Kurve V+(f) über dem Körper k den
Grad d des homogenen Polynoms f . Im Fall d = 1 nennen wir V+(f) eine
Gerade und für d = 2 einen Kegelschnitt. Ein K-rationaler Punkt für eine
Körpererweiterung K ⊃ k ist ein Punkt aus V+(f) ⊂ P2(K). Um einfacher
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über die K-rationalen Punkte einer Kurve zu reden, führen wir die Notati-
on Cf = V+(f) ⊂ P2(k) ein. Wir bezeichnen die Menge aller K-rationalen
Punkte der Kurve Cf als Cf (K).

Es ist nun klar, sollte man einen Hintergrund in Kategorientheorie und
Funktoren haben, dass Cf ein Unterfunktor des Funktors P2 : (k−Körper)→
(Set) von der Kategorie der Körper über k in die Kategorie der Mengen ist
(Siehe [6, Kapitel 2, Absatz 2]). Und diesen Fakt möchten wir nutzen, um
projektive Transformationen einzuführen. Ist M : A3(k)→ A3(k) eine nicht-
singuläre lineare Transformationen, also eine Matrix mit vollem Rang, so
besitzt diese eine Inverse M−1 und wir können dazu assoziierte projekti-
ve Transformationen P2(M),P2(M−1) : P2(K) → P2(K) bilden. Diese sind
wohldefiniert, da Matrizen Geraden auf Geraden abbilden. Als Bijektionen,
welche Geraden auf Geraden abbilden nennen wir die Abbildungen P2(M)
und P2(M)−1 auch Kolineationen. Hierbei ist zu beachten, dass jedoch nicht
alle Kolineationen auch projektive Transformationen sind. Über dem Körper
F4, welcher nach Proposition 1.3 nicht-triviale Automorphismen besitzt, wir-
ken diese als Kolineationen, jedoch nicht als projektive Transformationen auf
P2(F4).

Wichtig ist, dass wenn f ∈ k[x, y, z]d ein homogenes Polynom von Grad d
ist, dass auch f ◦M ein homogenes Polynom von Grad d ist und Cf◦M(K) =
M−1Cf (K). Der Grund dafür ist, dass (f ◦M)(M−1(x, y, z)) = 0 genau dann
gilt, wenn f(x, y, z) = 0, doch wir können dies auch direkt visuell an einem
zwei-dimensionalen Beispiel erkennen, indem wir den Schnitt des Graphen
von f mit der Ebene z = 0 betrachten:

f(x, y) = y2 − x3 + x, M =

(
cos(π

4
) sin(π

4
)

− sin(π
4
) cos(π

4
)

)

(a) Cf (b) C(f◦M) (c) M−1Cf

Abbildung 3: Darstellung von Cf◦M(R) = M−1Cf (R) als Schnitt von Gra-
phen mit der Z = 0 Ebene

12



In beiden Fällen 3b und 3c sind die Schnittmengen der Graphen mit
der Ebene z = 0 identisch. Somit bilden projektive Transformationen alge-
braische Kurven auf algebraische Kurven ab und erhalten dabei Grad und
Irreduzibilität, da eine Abbildung M wie oben als Gruppenautomorphismus
auf k[T1, T2, T3]d für jeden Grad d ∈ N wirkt. Sie stellen also die Morphismen
zwischen algebraischen Kurven da. Eine wichtige Folgerung daraus ist:

Proposition 1.11. Sei Cf eine nicht-singuläre projektive kubische Kurve.
Eine projektive Transformation ändert nicht die Anzahl der Singularitäten
von Cf .

Beweis. Betrachten wir die projektive Transformation P2(M) für eine nicht-
singuläre Matrix M . Angenommen für die nicht-singuläre kubische Kurve
Cf würde Cf◦M eine Singularität besitzen. Da Cf◦M = M−1Cf ist, müsste
bereits Cf eine Singularität besitzen, da M−1 nicht-singulär ist, da M nicht
singulär ist. Dies ist ein Widerspruch.

2 Elliptische Kurven

2.1 Die allgemeine Weierstraßform

Somit kommen wir auch zum Kernthema dieser Bache-
lorarbeit. Die elliptischen Kurven sind nicht-singuläre ku-
bische projektive Kurven. Diese haben immer einen In-
flektionspunkt, also einen nicht-singulären Punkt, dessen
Tangente seine Kurve nur ein mal schneidet. Wenden wir
auf eine elliptische Kurve eine projektive Transformation
an, wodurch wir ihren Inflektionspunkt zum Punkt im Un-
endlichen O = (0 : 1 : 0) verschieben, sodass die Tangente
der elliptischen Kurve bei O die Gerade im Unendlichen
ist, so erhalten wir als definierende Gleichung dieser trans-
formierten elliptischen Kurve folgendes:

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3

Diese Gleichung nennen wir auch projektive allgemei-
ne Weierstraßgleichung. Rechts sehen wir am Beispiel
der homogenisierten Gleichung von −x3 + 1

4
x(2y + z)2 +

1
2
(2y + z)z2, wie der oben genannte Prozess zu der allge-

meinen Weierstraßgleichung Y 2Z−X3+XZ2 führt. Dabei

verwenden wir P2(M) mit M =

1 0 0
0 −0.5 1
0 1 0

.
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Standardmäßig werden wir diese jedoch dehomogeni-
siert nach der Z-Koordinate in der affinen Ebene behan-
del. So erhalten wir mit der Konvention φ3(X) = x und
φ3(Y ) = y die affine allgemeine Weierstraßgleichung, be-
ziehungsweise affine allgemeine Weierstraßform:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

welche wir fortan benutzen werden, um elliptische Kur-
ven aufzuschreiben. Dabei steht E für die Lösungsmenge
der Gleichung. Links sehen wir, wie aus der allgemeinen
Weierstraßform die affine allgemeine Weierstraßform ge-
wonnen wird. Wäre die Charakteristik des Körpers über
dem wir diese Gleichung betrachten ungleich 2, so könnten
wir noch eine kürzere Gleichung - die kurze Weierstraß-
gleichung - konstruieren. Doch da wir uns für den Körper
mit vier Elementen interessieren, ist dies nicht relevant für
uns.

Wir möchten bei der allgemeinen Weierstraßform nur
einen Punkt im Unendlichen haben, welcher ein Inflekti-
onspunkt ist und als Tangente die Gerade im Unendlichen
hat, damit wir die folgende Gruppenstruktur später ein-
facher anwenden können.

2.2 Das Gruppengesetz

Das Chord-Tangent group law, welches in der Einführung bereits kurz er-
wähnt wurde und ein Gruppengesetz auf den elliptischen Kurven definiert,
entspringt folgendermaßen: Sei Cf eine elliptische Kurve. Wählen wir eine
Gerade L ⊂ P2 aus, so schneidet sie die elliptische Kurve 3 mal nach Be-
zout’s Theorem, da Cf eine kubische Kurve ist. Dabei ist wichtig, sollte L
eine Tangente von Cf am Punkt P sein, so wird P doppelt gezählt.

Definition 2.1. Wir definieren auf der elliptischen Kurve Cf eine binäre
Operation durch

+ : Cf × Cf −→ Cf , P +Q = (PQ)O

Dabei bezeichnet PQ den dritten Schnittpunkt der Geraden L durch P und
Q, beziehungsweise der Tangente an P , sollte P = Q sein, mit der elliptischen
Kurve Cf .

Proposition 2.2. Durch die oben definierte Operation wird Cf zu einer abel-
schen Gruppe.
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Beweis. 1. Die Kommutativität folgt daraus, dass die Gerade PQ durch
P und Q dieselbe ist wie QP durch Q und P .

2. Dazu funktioniert O als das neutrale Element, denn für einen Punkt
P ∈ Cf geht die Gerade durch P und O nur noch durch einen dritten
Punkt PO. Wenn wir nun die Gerade durch PO und O betrachten,
so muss diese ihren dritten Schnittpunkt wieder bei P haben. Also gilt
P +O = (PO)O = P

3. Zu einem P ∈ Cf existiert auch ein inverses −P mit der Eigenschaft
P + (−P ) = O. Wählen wir −P als PO, so sehen wir durch die Kom-
mutativität von + und dadurch, dass O das neutrale Element ist, dass
O = (P +O) + PQ = P + (−P ).

4. Zuletzt ist der Beweis der Assoziativität in [1, Kapitel 7] zu finden.

Diese Gruppe ist zudem immer von Rang 1, also zyklisch, oder Rang 2,
also das Produkt zweier zyklischer Gruppen. Eine sehr einfache Folgerung,
deren Beweis direkt aus den obigen Sätzen folgt, ist:

Korollar 2.3. Sind P,Q,R ∈ Cf Punkte auf einer Geraden, so gilt: P +Q+
R = O

Abbildung 4: E : y2 =
x3 − x ⊂ P2 = A2∪̇P1

Nun können wir auch erklären, warum wir die
allgemeine Weierstraßform einer elliptischen Kur-
ve E so gewählt haben, dass ihr Inflektionspunkt
der Punkt im Unendlichen O und seine Tangen-
te die Gerade im Unendlichen ist. Rechts sehen
wir am Beispiel der elliptischen Kurve mit Weier-
straßform y2 = x3−x im Reellen wieso: Dadurch,
dass der Inflektionspunkt und seine Tangente im
Unendlichen liegen, können wir unter der Dekom-
position P2 = A2∪̇P1 sehen, dass alle Punkte wel-
che nicht trivial auf E wirken in A2 liegen. Ledig-
lich das neutrale Element O liegt fernab auf der
projektiven Gerade.

2.3 Wichtige Konstanten

Nun stellt sich uns die Frage, ob unter einer projektiven Transformation
die Gruppenstruktur erhalten bleibt? Erstaunlicherweise ist die Antwort ja,
was daran liegt, dass projektive Transformationen auch Kolineationen sind.
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Jedoch muss eine projektive Transformation nicht den Punkt im Unendlichen
der elliptischen Kurve bei O = (0 : 1 : 0), oder als Inflektionspunkt belassen.

Wir fragen uns jedoch, welche projektiven Transformationen den Punkt
im Unendlichen unverändert lassen und ihn als Inflektionspunkt mit der Ge-
raden im Unendlichen als Tangente beibehalten. Werden diese Eigenschaften
nämlich erhalten, so wird auch die transformierte elliptische Kurve in allge-
meiner Weierstraßform sein.

Definieren wir dafür zuerst ein paar nützliche Konstanten zu einer frei
wählbaren kubischen Kurve E in affiner allgemeiner Weierstraßform, welche
durch quadratische Ergänzung auftreten:

b2 = a2
1 + 4a2

b4 = a1a3 + 2a4

b6 = a2
3 + 4a6

b8 = a2
1a6 − a1a3a4 + 4a2a6 + a2a

2
3 − a2

4

Diese Werte stehen dabei durch 4b8 = b2b6 − b2
4 in Relation und führen uns

zu dem Begriff der Diskriminanten:

Definition 2.4. Sei E eine projektive kubische Kurve in allgemeiner Weier-
straßform. Wir definieren zu E die Diskriminante ∆ durch:

∆ = ∆(E) = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6

Die Diskriminante ist, wie wir noch sehen werden, dadurch für uns von
Bedeutung, dass sie uns ein einfaches Kriterium liefert, welches uns entschei-
den lässt, ob eine kubische Kurve nicht-singulär (also eine elliptische Kurve)
ist, oder nicht. Darauf werden wir im nächsten Abschnitt beim Untersuchen
der Bedingungen für Glätte einer kubischen Kurve eingehen und dies speziell
für den Körper mit vier Elementen beweisen. Außerdem definieren wir jetzt
noch die Konstanten, welche durch kubische Ergänzung auftreten:

c4 = b2
2 − 24b4

c6 = −b3
2 + 36b2b4 − 21b6

mit der Relation 123∆ = c3
4− c2

6. Diese führen uns – sollte ∆(E) invertierbar
sein – zu der j-Invarianten.

Definition 2.5. Zu einer projektiven kubischen Kurve mit invertierbarer
Diskriminante definieren wir die j-Invariante als:

j = j(E) =
c3

4

∆
= 123 c3

4

c3
4 − c2

6
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Doch wieso nennen wir diese Konstante eine Invariante? Wir haben be-
reits die projektiven Transformationen als Morphismen der projektiven Va-
rietäten und insbesondere der elliptischen Kurven beschrieben. Somit sind
zwei elliptische Kurven Cf und Cg isomorph, wenn diese isomorph als pro-
jektive Varietäten sind, also Morphismen ϕ : Cf → Cg und ψ : Cg → Cf
existieren, sodass deren Kompositionen ϕ ◦ ψ und ψ ◦ ϕ die Identitäten auf
Cf , beziehungsweise Cg sind. Wir können somit bei einer Isomorphie von
zwei elliptischen Kurven diese umkehrbar eindeutig aufeinander durch ei-
ne projektive Transformation abbilden. Die j-Invariante ist nun genau zu
diesen Isomorphien invariant. Das bedeutet, alle isomorphen Kurven haben
dieselbe j-Invariante. Sollte der zugrunde liegende Ring dieser Kurven zu-
dem algebraisch abgeschlossen sein, so gilt sogar die Rückrichtung [3] und
zwei elliptische Kurven sind isomorph, genau dann, wenn ihre j-Invariante
gleich ist. Ein Beweis dazu folgt im kommenden Abschnitt. Außerdem gilt,
sind zwei elliptische Kurven isomorph, so sind auch deren abelschen Gruppen
isomorph. Wie wir auch noch sehen werden, können wir jedoch nicht durch
isomorphe abelsche Gruppen elliptischer Kurven darauf schließen, dass diese
elliptischen Kurven isomorph sind[8].

2.4 Zulässige Variablenänderungen

Angenommen wir haben eine elliptische Kurve E, welche ihren Inflektions-
punkt im Punkt im Unendlichen O = (0 : 1 : 0) hat und dessen Tangente die
Gerade im Unendlichen ist. Betrachten wir die affine Weierstraßform dieser
Kurve, so fragen wir uns, welche projektiven Transformationen diese Eigen-
schaften beibehalten. Dazu betrachten wir Folgendes:

Definition 2.6. Eine zulässige Variablenänderung in der affinen Weierstraß-
gleichung einer elliptischen Kurve Cf mit f ∈ k[x, y] hat die Form:

x = u2x̄+ r, y = u3ȳ + su2x̄+ t

mit u, r, s und t in k und u invertierbar.

Dabei ist die Betrachtung x 7→ u2x̄+r und y 7→ u3ȳ+su2x̄+ t als ”Varia-
blenänderung“ eine äquivalente Sichtweise zu der, dass dies eine projektive
Transformation ist. Die wichtigste Eigenschaft dieser Variablenänderungen,
welche sie ”zulässig“ macht, ist folgende:

Proposition 2.7. Substitution durch eine zulässige Variablenänderung der
Variablen wie in 2.6 einer elliptischen Kurve in affiner allgemeiner Weier-
straßgleichung:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6
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führt zu der neuen elliptischen Kurve in affinen allgemeinen Weierstraßglei-
chung:

ȳ2 + ā1x̄ȳ + ā3ȳ = x̄3 + ā2x̄
2 + ā4x̄+ ā6

mit den Relationen:

uā1 = a1 + 2s

u2ā2 = a2 − sa1 + 3r − s2

u3ā3 = a3 + ra1 + 2t

u4ā4 = a4 − sa3 + 2ra2 − (t+ rs)a1 + 3r2 − 2st

u6ā6 = a6 + ra4 + r2a2 + r3 − ta3 − rta1 − t2

Beweis. Da die Länge des Beweises durch seine langwierigen Rechnungen
den Rahmen dieser Arbeit sprengen würde, verweisen wir auf [1, Kapitel III
Absatz 1]

Direkt daraus folgt auch, dass u3c̄4 = c4, u6c̄6 = c6, u12∆̄ = ∆ und
insbesondere j̄ = j, was die Invarianz der j-Invarianten unter zulässigen
Variablenänderungen, beweist.

Die zulässigen Variablenänderungen sind somit die projektiven Transfor-
mationen, welche den Punkt im Unendlichen erhalten und auch die Tangente
dessen, als Gerade im Unendlichen beibehalten. Man nennt solche projekti-
ven Transformationen elliptischer Kurven, welche den Punkt im Unendlichen
und seine Tangente, sowie die Gruppenstruktur unverändert lassen auch Iso-
genien. Die Kompositionen und das Inverse zulässiger Variablenänderungen
sind auch wieder zulässige Variablenänderungen, da diese projektive Trans-
formationen sind. Insbesondere gilt, dass eine zulässige Variablenänderung
ϕ : E → Ē auch eine affine lineare Transformation ist, wodurch für P und
Q auf E gilt, dass ϕ(P + Q) = ϕ(P ) + ϕ(Q), wodurch zulässige Variablen-
änderung Gruppenisomorphismen sind.

Aufgrund dessen bezeichnen wir die zulässigen Variablenänderungen im
folgenden als Isomorphismen elliptischer Kurven in affiner Weierstraßform.

3 Isomorphe elliptische Kurven über F4

3.1 Nicht-singuläre Kurven in Charakteristik 2

Wir haben bereits gesehen, dass zu jeder elliptischen Kurve eine affine allge-
meine Weierstraßform mit Punkt im Unendlichen O = (0 : 1 : 0) existiert,
welcher nicht in der affinen Ebene liegt. Nun möchten wir wissen, zu welcher
affinen Weierstraßform eine elliptische Kurve mit Punkt im Unendlichen wie
gerade beschrieben gehört.
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Proposition 3.1. Zu jeder affinen allgemeinen Weierstraßgleichung f ist der
einzige Punkt im Unendlichen, welcher auf der korrespondierenden Kurve Cf
liegt der Punkt (0 : 1 : 0).

Beweis. Betrachte die affine allgemeine Weierstraßgleichung y2+a1xy+a3y =
x3 + a2x

2 + a4x+ a6 und homogenisiere sie zur projektiven allgemeinen Wei-
erstraßgleichung Y 2Z + a1XY Z + a3Y Z

2 = X3 + a2X
2Z + a4XZ

2 + a6Z
3.

Nachrechnen ergibt, dass (0 : 1 : 0) eine Lösung ist. Es kann keine weite-
re Lösung auf der Geraden im Unendlichen Z = 0 existieren, da wenn wir
Z = 0 einsetzen, nur 0 = X3 übrig bleibt. Somit muss für einen Punkt
im Unendlichen die X-Koordinate Null sein. Auch kann die Y -Koordinate
nicht Null sein, da (0 : 0 : 0) nicht in der projektiven Ebene liegt. Somit
ist der einzige Punkt im Unendlichen einer allgemeinen Weierstraßgleichung
O = (0 : 1 : 0).

Jedoch muss die kubische Kurve Cf , welche zu der allgemeinen Weier-
straßgleichung f korrespondiert auch nicht-singulär sein, damit Cf eine el-
liptische Kurve ist. Wir schränken nun unsere Sicht auf einen Körper k mit
Charakteristik 2 – wie den Körper mit vier Elementen – ein, wo uns folgende
Proposition hilft:

Proposition 3.2. Die Kurve korrespondierend zu einer allgemeinen Weier-
straßgleichung über einem Körper k mit Charakteristik 2 ist nicht-singulär,
wenn ihre Diskriminante nicht Null ist.

Beweis. Sei y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 eine affine allgemeine

Weierstraßgleichung konstruiert zu der Kurve E. Nach Proposition 1.11 reicht
es aus diese auf Singularitäten zu prüfen.

1. Fall j 6= 0: Dieser Fall tritt genau dann ein, wenn a1 6= 0 ist. Das liegt
daran, weil in Charakteristik 2 die ausgegrauten Terme wegfallen:

j =
c3

4

∆
c4 = b2

2−24b4

b2 = a2
1+4a2

Wir wählen nun eine Konstante c ∈ k und wenden die zulässige Varia-
blenänderung x 7→ x+ c, y 7→ y an. Dadurch wird:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

zu
ȳ2 + a1x̄ȳ + (a1c+ a3)ȳ = x̄3 + a2x̄

2 + a4x̄+ a6.
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Wenn a1 ungleich Null ist können wir also durch eine passende Wahl
von c als a3/a1 eine zulässige Variablenänderung finden, welche unse-
re allgemeine Weierstraßform so umformt, dass kein a3y Term mehr
vorhanden ist:

y2 + a1xy = x3 + a2x
2 + a4x+ a6.

Wenden wir jetzt die zulässige Variablenänderung x 7→ a3
1x, y 7→ a3

1y
an, so können wir diese resultierende Gleichung durch a1 = 1 normali-
sieren. So erhalten wir:

y2 + xy = x3 + a2x
2 + a4x+ a6.

Indem wir indessen s = −a4 in einer zulässigen Variablenänderung wäh-
len, erhalten wir eine isomorphe Kurve mit allgemeiner Weierstraßform:

y2 + xy = x3 + a2x
2 + a6.

Hieraus folgt b2 = a2
1 = 1, b4 = 0a1+2a4 = 0 = 02+4a6 = b6 und b8 = a2

4

durch die Definition der b2, b4, b6 und b8. Außerdem vereinfacht sich ∆
zu a6, da c4 = 1 ist. Nach Proposition 1.7 existiert eine Singularität,
wenn ∂f

∂x
= y + x2, ∂f

∂y
= x und f = y2 + xy − x3 − a2x

2 − a6 eine
gemeinsame Nullstelle besitzen. Die Terme y+x2 und x teilen sich nur
bei (0, 0) eine Nullstelle. Diese ist auch eine Nullstelle von f , wenn ihr
konstanter Term a6 Null ist.

Somit ist eine kubische Kurve in allgemeiner Weierstraßform mit j 6= 0
genau dann glatt, wenn ∆ ungleich Null ist und dieser Fall stimmt.

2. Fall j = 0: Analog zum obigen Fall wissen wir, dass a1 = 0 sein muss.
Außerdem erhalten wir durch kubische Ergänzung:

y2 + a3y = x3 + a4x+ a6

Hieraus folgt b2 = b4 = 0, b6 = a2
3 und b8 = a2

4, woraus folgt, dass
c4 = 1 und ∆ = a4

3 sowie j = 0. Berechnen wir wieder wie im obigen
Fall ∂f

∂x
= x2 +a4, ∂f∂y = a3 sehen wir direkt, dass die Kurve genau dann

nicht-singulär ist, wenn a3 6= 0, beziehungsweise weil k als Körper keine
nilpotenten Elemente besitzt, wenn ∆ 6= 0 ist. Somit stimmt auch dieser
Fall.

Korollar 3.3. Die affine allgemeine Weierstrassform einer elliptischen Kur-
ve E vereinfacht sich für j(E) 6= 0 zu y2 +xy = x3 + a2x

2 + a6 und für j = 0
zu: y2 + a3y = x3 + a4x+ a6.
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3.2 Isomorphe elliptische Kurven in Charakteristik 2

Wann sind zwei elliptische Kurven E und Ē isomorph über einem Körper k
mit Charakteristik 2? Auf jeden Fall muss j(E) = j(Ē) gelten, da j invariant
unter Isomorphismen elliptischer Kurven ist. Nun vereinfacht sich die Frage
auf die Fälle j 6= 0 und j = 0:

Fall j 6= 0: Wie wir bereits aus Proposition 3.2 wissen, ist dieser Fall
gleichbedeutend mit a1 6= 0. Dank 3.3 wissen wir, dass E und Ē bis auf
Isomorphie folgendermaßen beschrieben werden können:

E :y2 + xy = x3 + a2x
2 + a6

Ē :y2 + xy = x3 + ā2x
2 + ā6

Somit sind E und Ē isomorph, sollte es eine zulässige Variablenänderung
f : E → Ē geben. Angenommen f(x) = u2x+ r so würde sich die Gleichung
von E unter f zu

y2 + u2xy + ry =
(
r + u2x

)3
+ a2

(
r + u2x

)2
+ a6

ändern. Insbesondere sehen wir einen ry Term. Da dieser Null sein muss, gilt
somit r = 0. Auch muss das x auf der linken Seite der Gleichung normiert
bleiben, wodurch u = 1 gelten muss. Somit muss f(x) = x.

Betrachten wir nun f(y) = u3y + su2x+ t = y + sx+ t, so ändert sich E
unter f zu:

(sx+ t+ y)2 + x (sx+ t+ y) = x3 + a2x
2 + a6

was nach Ausklammern zu

y2 + t2 + tx+ xy + (s2 + s)x2 = x3 + a2x
2 + a6

wird. Wir sehen, dass ein tx Term vorkommt, welcher nicht in der Gleichung
von Ē erscheint. Somit muss t = 0 gelten, wodurch wir folgendes nach einer
Umformung erhalten:

y2 + xy = x3 + (a2 − (s2 + s))x2 + a6.

Daraus folgt, dass f(y) = y + sx gilt. Aus diesen Ergebnissen folgern wir
direkt:

Lemma 3.4. Es existiert ein Isomorphismus f : E → Ē für j(E) = j(Ē) 6=
0 mit affiner allgemeiner Weierstraßform wie oben genau dann, wenn es ein
s ∈ k gibt, für welches a2 − (s2 + s) = ā2, beziehungsweise s2 + s = ā2 − a2

gilt.
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Natürlicherweise folgt daraus, dass in einer Körpererweiterung K ⊃ k in
welcher diese Bedingungen gilt, auch E und Ē isomorph werden, sollten sie es
nicht bereits in E gewesen sein. Hierbei erinnern wir noch einmal daran, dass
sollte k algebraisch abgeschlossen sein, so folgt aus der gleichen j-Invarianten
zweier elliptischer Kurven ihre Isomorphie.

Hinsichtlich des Körpers F4 ist das Bild der Funktion s 7→ s2 + s nur
{0, 1}. Daher gilt trivialerweise:
Proposition 3.5. In dem Körper F4 existiert ein Isomorphismus zwischen
zwei elliptischen Kurven E und Ē mit j(E) = j(Ē) 6= 0 nur, wenn ā2 − a2

gleich 1 oder 0 ist.
Aus obigem Lemma folgt auch direkt, dass in einem Körper, welcher die

quadratische Gleichung s2 + s = ā2 − a2 erfüllt, die Automorphismengruppe
Aut(E) isomorph zu Z/2Z ist.

Fall j = 0: Wie im vorherigen Fall ist dieser Fall äquivalent zu a1 = 0 und
gehen wir analog vor, erkennen wir, dass f(x) = u2x und f(y) = u3y+su2x+t
gilt. Dazu muss es u, r, s, t ∈ k wie in 2.6 geben, für welche die folgenden
Gleichungen stimmen:

u3ā3 = a3

u4ā4 = a4 + sa3 + s4

u6ā6 = a6 + s2a4 + ta3 + s6 + r2

Somit erhalten wir die Schlüsselaussage:
Lemma 3.6. Es existiert ein Isomorphismus f : E → Ē für j(E) = j(Ē) =
0 mit affiner allgemeiner Weierstraßform wie oben genau dann, wenn u3 = a3

ā3
eine Kubikwurzel in k besitzt, sowie die separable Gleichung vierten Grades
s4+a3t+a4+u4ā4 = 0 eine Lösung in s besitzt und die quadratische Gleichung
t2 + a3t+ (s6 + s2a4 + a6 + u6ā6) = 0 eine Lösung in t besitzt.

Interessant mit Blick auf den Körper F4 ist hierbei, dass, wie wir es bereits
im Beweis von 1.10 gesehen haben, jedes Element sich selbst als Kubikwurzel
hat.

Betrachten wir nun eine Körpererweiterung K ⊃ k in welcher stets die
Lösungen, welche in 3.6 gefordert sind, vorhanden sind. Dort gilt somit
Aut(E) ∼= Q8, wobei Q8 = {±1,±i,±j,±k} die Einheitengruppe der ganz-
zahligen Quaternionen ist.

3.3 Klassifikation der elliptischen Kurven über F4

Wir möchten nun alle elliptischen Kurven über dem Körper mit vier Elemen-
ten klassifizieren. Das Resultat dessen ist das Hauptresultat dieser Bachelor-
arbeit:
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Theorem 3.7. Über dem Körper F4 gibt es bis auf Isomorphie 13 elliptische
Kurven:

j-Invariante Repräsentant
1 E1 : y2 + xy = x3 + 1
1 E2 : y2 + xy = x3 + ux2 + 1

u+ 1 E3 : y2 + xy = x3 + u
u+ 1 E4 : y2 + xy = x3 + ux2 + u
u E5 : y2 + xy = x3 + (u+ 1)
u E6 : y2 + xy = x3 + ux2 + (u+ 1)
0 E7 : y2 + y = x3

0 E8 : y2 + y = x3 + u
0 E9 : y2 + uy = x3

0 E10 : y2 + uy = x3 + u
0 E11 : y2 + (u+ 1)y = x3

0 E12 : y2 + (u+ 1)y = x3 + 1
0 E13 : y2 + y = x3 + x

Beweis. Wir betrachten wieder zwei Fälle, je nachdem, ob die j-Invariante
einer elliptischen Kurve E über dem Körper mit vier Elementen F4 null oder
nicht-null ist.

1. Fall j 6= 0: Nach 3.3 können wir annehmen, dass E bis auf Isomorphie
die Form y2 +xy = x3 +a2x

2 +a6 hat. Nach 3.2 muss dabei a6 ungleich
Null sein.

Wählen wir a2 = 0 und a6 = 1 erhalten wir E1 : y2+xy = x3+1. Aus 3.5
folgt, dass E1

∼= E ′1 : y2 + xy = x3 + x2 + 1 jedoch die elliptische Kurve
E2 : y2 + xy = x3 + ux2 + 1 mit E2

∼= E ′2 : y2 + xy = x3 + (u+ 1)x2 + 1
nicht isomorph zu E1 ist.

Wählen wir nun a2 = 0 und a6 = u, so erhalten wir E3 : y2 + xy =
x3 + u. Da sich die j-Invariante einer Kurve unter einer zulässigen
Variablenänderung nicht ändert, ist diese Kurve nicht isomorph zu E1

oder E2 und analog wie im obigen Fall erhalten wir die nicht-isomorphe
Kurve E4 : y2 + xy = x3 + ux2 + u

Zu guter Letzt wählen wir noch a2 = 0 und a6 = (u+ 1), wodurch wir
E5 : y2 +xy = x3 +(u+1) erhalten, wobei diese Kurve wiederum nicht-
isomorph zu der elliptischen Kurve E6 : y2 + xy = x3 + ux2 + (u + 1)
nach denselben Gründen wie oben ist.

Wir finden die j-Invarianten der jeweiligen elliptischen Kurven durch
simples Ausrechnen mittels ihrer Formel aus 2.5.
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2. Fall j = 0: Nach 3.3 muss die affine allgemeine Weierstraßform von E
bis auf Isomorphie y2 + a3y = x3 + a4x + a6 sein. Dazu gilt nach 3.2,
dass a3 6= 0 ist, da a3

3 = ∆ 6= 0.
Wählen wir daher a3 = 1, a4 = 0 und a6 = 0, was uns die elliptische
Kurve E7 : y2 +y = x3 liefert. Mittels 3.6 können wir herausfinden, wel-
che Variablenänderungen zulässig sind. Indem wir alle nicht-zulässigen
Variablenänderungen betrachten, finden wir alle nicht-isomorphen Kur-
ven. Insbesondere nutzen wir dabei, dass x 7→ x4 die Identität auf F4

ist, sowie dass die Abbildung x 7→ x6 genau wie x 7→ x3 in F4 jedes
Element außer 0 auf 1 schickt. Somit existiert eine zulässige Variablen-
änderung y 7→ vy + sv2x + t genau dann, wenn es v, r, s, t ∈ k mit
v 6= 0 gibt, sodass s + a3t + a4 + vā4 = 0 eine Lösung in s, sowie
t2 + a3t+ (s6 + s2a4 + a6 + ā6) = 0 eine Lösung in t besitzt.
Für unsere Wahl a3 = 1, a4 = 0 und a6 = 0 bedeutet das, t + vā4 = s
und t2 + t + (s6 + ā6) = 0. Wählen wir ā4 = 0 so erhalten wir t = s
und die Gleichung t2 + t+ t6 = ā6 hat nur für ā6 = 0 oder ā6 = 1 eine
Lösung. Somit ist die Kurve E8 : y2 + y = x3 + u ∼= y2 + y = x3 + u
nicht isomorph zu E7.
Da nach 3.6 u3ā3 = a3 für eine zulässige Variablenänderung gelten
muss, wobei sich das in F4 zu ā3 = a3 vereinfacht, können wir nun
ā3 6= a3 betrachten, um nicht-isomorphe elliptische Kurven zu erhalten.
So kann es zu der elliptischen Kurve mit a3 = u, a4 = 0 und a6 = 0, also
E9 : y2 + uy = x3 keinen Isomorphismus von E7 oder E8 geben. Gehen
wir analog wie im vorherigen Fall vor, erhalten wir E10 : y2+uy = x3+u,
wobei E10 nicht isomorph zu E9, E8 und 7 sein kann.
Analog finden wir für a3 = u + 1 die nicht-isomorphen elliptischen
Kurven E11 : y2 + (u+ 1)y = x3 und E12 : y2 + (u+ 1)y = x3 + 1

Zuletzt erkennen wir, würde man bei einer der Kurven E7, E8, E9,
E10, E11, E12 für eine zulässige Variablenänderung ā4 6= 0 wählen, so
erhalten wir zu der Gleichung t2 + a3t + (s6 + s2a4 + a6 + ā6) = 0 mit
t = ā4 + s keine Lösung. Dies liefert uns E13 : y2 + y = x3 + x eine
neue Isomorphieklasse elliptischer Kurven und wir haben alle möglichen
nicht-zulässigen Variablenänderungen in F4 ausprobiert.

3.4 Abelsche Gruppen elliptischer Kurven auf F4

Zuletzt können wir noch die Isomorphieklassen der elliptischen Kurven dar-
stellen. Interessant ist dies für uns unter Betrachtung des RSA-Verfahrens,
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welches wir in der Einleitung kennengelernt haben. Angenommen es wird die-
ses angewandt und zwei Personen einigen sich auf eine elliptische Kurve über
dem Körper F4, sowie einen Punkt P darauf. Nun werden aP und bP mit a
und b als natürliche Zahlen, von den verschiedenen Personen generiert und
ausgetauscht. Aus der Einleitung wissen wir, dass diese zwei Personen nun
das Geheimnis abP teilen. Möchten wir dieses als Angreifer herausfinden, wä-
re es sehr nützlich zu wissen, welche Werte xP für ein natürliches x auftreten
können und wie diese zusammenhängen. Dazu wählen wir zu jeder Isomor-
phieklasse einen Repräsentanten und konstruieren zu diesem, genauso wie in
der Einleitung, eine Grafik, welche die Gruppenstruktur darstellt. Außerdem
können wir, da wir wissen, dass die auftretenden Gruppen stets zyklisch von
maximal Rang zwei sind, durch Ausprobieren einen, beziehungsweise zwei
Erzeuger finden.

Die Anzahl der rationalen Punkte auf einer elliptischen Kurve E über Fqp
ist durch folgendes Theorem eingeschränkt:

Theorem 3.8 (Riemann-Hypothese für elliptische Kurven (Hasse, 1934)).
Sei E eine elliptische Kurve über Fq. Dann gilt

|#E(Fqn)− 1− qn| ≤ 2qn/2, ∀n ≥ 1.

Somit können wir nach maximal 9 gefundenen rationalen Punkten un-
sere Suche einstellen. Dies gibt uns folgende Klassifikation aller elliptischen
Kurven über dem Körper F4 bis auf Isomorphie:
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